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Asset market interconnectedness can give rise to significant contagion risks
during periods of financial crises that extend beyond the risks associated with
changes in volatilities and correlation. These channels include the transmission of
shocks operating through changes in the higher order comoments of asset returns,
including changes in coskewness arising from changes in the interaction between
volatility and average returns across asset markets. These additional contagion
channels have nontrivial implications for the pricing of options through changes
in the payoff probability structure and more generally, in the management of
financial risks. The effects of incorrectly pricing risk has proved to be significant
during many financial crises, including the subprime crisis from mid 2007 to mid
2008, the Great Recession beginning 2008 and the European debt crisis from
2010. Using an exchange options model, the effects of changes in the comoments
of asset returns across asset markets are investigated with special emphasis given
to understanding the effects on hedging risk during financial crises. The results
reveal that by not correctly pricing the risks arising from higher order moments
during financial crises, there is significant mispricing of options, while hedged
portfolios during noncrisis periods become exposed to price movements in times
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1 Introduction

The subprime financial crisis of 2007-2008, immediately followed by the Great Reces-
sion in mid 2008, and more recently the European debt crisis beginning 2010, reveal
significant risks that arise from the interconnectedness of asset markets in the global
financial landscape. The magnitude of shock transmissions from one market to others
often far exceed expectations based on normal market linkages and dependence struc-
tures between assets (Dungey, Fry, Gonzalez-Hermosillo and Martin (2010)). Not only
do the codependence structures across financial markets change dramatically during
periods of financial turbulence, these changes often extend beyond the usual changes
in market correlation, and include additional crisis transmission channels operating
through higher order comoments of asset returns (Fry, Martin and Tang (2010)).

The effect of changes in the comoments of asset returns on recent financial crises
are highlighted in Tables 1 and 2. Table 1 provides the descriptive statistics on the
first three moments of equity returns for five European countries and the US over
four periods: a noncrisis period (January 3, 2006 to July 25, 2007), and three crisis
periods consisting of the subprime crisis (July 26, 2007 to September 14, 2008), the
Great Recession (September 15, 2008 to December 31, 2012) and the European debt
crisis (January 1, 2010 to August 30, 2012) compared to the noncrisis period. All
six countries are characterized by falls in average returns and increases in volatility
during each crisis. Skewness also increases during the crisis periods, changing from
negative skewness in the noncrisis period for equity returns of all six countries to either
positive skewness or smaller negative skewness. Table 2 shows that similar results occur
for coskewness between pairs of equity returns of countries, with coskewness changing
from being negative in the noncrisis period to being either positive or a smaller negative
coskewness in the crisis periods. The only exception is in Table 2 where coskewness
between the US and Greece (last block of the table) becomes more negative during the

Great Recession, changing from —0.181 to —0.238.



Table 1:

Descriptive statistics on daily equity returns of selected countries for noncrisis and
crisis periods: noncrisis (Jan. 3, 2006-Jul. 25, 2007); subprime crisis (Jul. 26,
2007-Sep. 14, 2008); Great Recession (Sep. 15, 2008-Dec. 31, 2012); European debt
crisis (Jan. 1, 2010-Aug. 30, 2012).

Noncrisis Subprime Great Recession European Debt
France Mean 0.087 -0.089 -0.025 -0.042
Std dev. 1.010 1.593 2.887 2.017
Skewness -0.312 -0.200 0.177 0.058
Germany Mean 0.131 -0.086 -0.019 0.034
Std dev. 1.203 1.808 2.934 1.938
Skewness -0.610 -0.120 0.027 -0.201
Greece Mean 0.117 -0.153 -0.099 -0.200
Std dev. 1.196 1.707 2.896 2.626
Skewness -0.479 0.049 -0.202 0.388
Italy Mean 0.066 -0.109 -0.055 -0.085
Std dev. 0.943 1.428 2.980 2.314
Skewness -0.345 -0.191 0.092 -0.035
Spain Mean 0.117 -0.079 0.017 -0.093
Std dev. 0.968 1.639 2.759 2.272
Skewness -0.312 -0.264 0.026 0.279
US Mean 0.062 -0.063 -0.027 0.032
Std dev. 0.629 1.235 2.246 1.070
Skewness -0.545 -0.040 0.111 -0.410




Table 2:

Coskewness statistics of daily equity returns for noncrisis and crisis periods: noncrisis
(Jan. 3, 2006-Jul. 25, 2007); subprime crisis (Jul. 26, 2007-Sep. 14, 2008); Great
Recession (Sep. 15, 2008-Dec. 31, 2012); European debt crisis (Jan. 1, 2010-Aug. 30,
2012). Coskewness is calculated using 1,473 ,. The first row of each block of the table
corresponds to asset 1 and the following rows correspond to asset 2.

Noncrisis Subprime  Great Recession European Debt
France (i = 1)
Germany -0.445 -0.086 0.046 -0.109
Greece -0.203 -0.008 -0.016 0.120
Italy -0.320 -0.178 0.127 0.007
Spain -0.303 -0.243 0.110 0.203
US -0.255 -0.119 -0.140 -0.208
Germany (i = 1)
France -0.355 -0.118 0.094 -0.027
Greece -0.366 -0.065 -0.067 0.070
Italy -0.376 -0.136 0.063 -0.044
Spain -0.381 -0.178 0.049 0.122
US -0.328 -0.116 -0.159 -0.265
Greece (1 = 1)
France -0.168 -0.120 0.040 0.035
Germany -0.423 -0.130 0.006 -0.076
Italy -0.203 -0.198 0.066 0.042
Spain -0.243 -0.139 -0.012 0.194
US -0.296 -0.049 -0.217 -0.127
Italy (1 = 1)
France -0.313 -0.197 0.152 0.037
Germany -0.472 -0.098 0.045 -0.089
Greece -0.261 -0.087 -0.005 0.136
Spain -0.299 -0.216 0.111 0.176
US -0.313 -0.083 -0.173 -0.177
Spain (1 = 1)
France -0.303 -0.218 0.157 0.132
Germany -0.467 -0.106 0.047 -0.015
Greece -0.274 0.013 -0.064 0.207
Italy -0.310 -0.173 0.126 0.073
Us -0.299 -0.058 -0.183 -0.117
US (i=1)
France -0.200 0.089 0.001 -0.030
Germany -0.216 -0.068 -0.062 -0.146
Greece -0.181 0.237 -0.238 0.095
Italy -0.233 0.154 0.031 -0.052
Spain -0.243 0.089 -0.127 0.079




As the statistics in Tables 1 and 2 allude, asset mispricing can be particularly
significant during periods of financial crisis and contagion and this has important im-
plications for market participants engaged in the hedging of financial risks and for
financial regulators seeking to manage risks across the financial institutions. This is
particularly the case for exchange option contracts written on two or more assets where
changes in the dependence structure of the underlying assets have a direct impact on
the price of the option. Significant risk exposures to changes in higher order moments
remain if hedging strategies are formulated using the standard Black-Scholes model
that invokes multivariate normality.

To investigate the effects of contagion during financial crises on alternative hedging
strategies, an exchange options model is developed following Fry, Martin and Tang
(2010) which extends the usual Black-Scholes assumption of lognormal prices of the
underlying assets that an option is written on, to a more general distribution that allows
for the effects of higher order moments as well as comoments arising from coskewness
(see also Lim, Lye, Martin and Martin (1998), Martin, Forbes and Martin (2003) and
Lim, Martin and Martin (2006) in the case of non-exotic options). Special attention is
given to identifying the size of mispricing from higher order comoments of asset returns
during the crisis periods and how it impacts upon hedging strategies. The key results
of the analysis reveal significant mispricing of options during financial crises from not
pricing the risks associated with higher order moments. The analysis also shows that
portfolios that are hedged against price movements during noncrisis periods become
exposed to unfavorable price movements during periods of crises.

The adoption of a generalized normal distribution to capture higher order codepen-
dence in asset returns represents a natural choice as Fry, Martin and Tang (2010) show
that Lagrange multiplier tests of contagion can be derived which relate to existing tests
of comoments such as coskewness. An alternative approach to capture higher order

dependence is based on using copulas (Patton (2006), Rodriguez (2007), Harvey (2010)



and Busetti and Harvey (2011)). This approach is also adopted by Martin and Wang
(2013) who propose a nonparametric test of contagion. Earlier approaches, especially in
the context of modelling options in the presence of nonnormal asset returns, consist of
the lognormal mixture model of Melick and Thomas (1997); the Edgeworth expansion
of Jarrow and Rudd (1982) and Corrado and Su (1997); the Hermite polynomial ap-
proximation of Ane (1999); the nonparametric density estimator of Ait-Sahalia, Wang
and Yared (2001); and the neural network approach of Garcia and Gencay (2000).
Moreover, the importance of transmission channels of contagion operating in higher
order moments are investigated by Favero and Giavazzi (2002) and Pesaran and Pick
(2007) who test for contagion in the outliers of asset returns; Bae, Karolyi and Stulz
(2003) who propose a co-exceedance test based on a multinomial logit model; whereas
Ait-Sahalia, Cacho-Diaz and Laeven (2010) allow for mutual jumps using a Hawkes
process.

The rest of the paper proceeds as follows. The theoretical model is developed
in Section 2 based on option contracts where one asset is exchanged for another. An
important feature of the model is that the stochastic structure underlying the returns on
the two assets is specified to be bivariate normal. The assumption of bivariate normality
is relaxed in Section 3 where the bivariate generalized normal distribution is specified to
allow for contagious channels operating through higher order moments and comoments
during periods of financial crises. To investigate the effects of these additional channels
of contagion on exchange options, a bivariate generalized lognormal distribution is
introduced to model the joint stochastic behaviour of the underlying asset prices at
the time the option contract matures. The results show that changes in coskewness
can change the mass of the joint probability distribution of prices, resulting in changes
in the probabilities of the payoffs and, in turn, the price of the options. The analysis
is extended in Section 4 where the effects on hedging strategies are discussed in the

presence of contagion during financial crises. Concluding comments and implications



for portfolio management during financial crises are provided in Section 5.

2 A Model of Exchange Options

An exchange option provides the right to exchange one asset for another asset (Magrabe
(1978)). Consider an European exchange option which gives the holder the right to
exchange asset 2 for asset 1 when the contract expires at time 7. The price at time ¢

of an exchange option (C}) is given by the expected value of its discounted payoff
Cy = exp [—ry (T' = 1) Ey [Maz (PLr — Por,0) |sera] (1)

where the option contract is written in terms of exchanging asset 2 for asset 1, P p
and P, are the respective prices of assets 1 and 2 at maturity and ry is the risk-free
rate of interest. The operator E; [.] represents the conditional expectations based on
information at time ¢ and the states of nature s; 1.

The exchange option price formulation is similar to a call option written on asset 1,
only that the strike price is stochastic and depends directly on the price of asset 2. The
value of the exchange option depends on the spread between the asset prices of 1 and
2. As the ratio of asset prices P;/P; falls, the value of holding an exchange option falls.
The holder of the exchange option is betting that the price of asset 1 will rise relative
to 2. The opposite is true for the seller of the exchange option who is obligated to give
up asset 1 in exchange for asset 2 from the option holder if the option is exercised.

For the Black-Scholes option price model, asset prices are assumed to follow geo-
metric Brownian motion. Under risk neutrality the stochastic differential equation of

asset prices is specified as
dP; = (ry — q;) Pidt + o PidW;, (2)

where ¢; is the dividend yield, o; is the instantaneous volatility of the returns on the
ith asset, and W; is a Wiener process with the property that dW; ~ N(0,dt) and

E [dW;dW;] = pdt allows for the Wiener processes to be correlated.
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Given equations (1) and (2), the Black-Scholes price of the exchange option (Ma-
grabe (1978), Hull (2000)), is

CP% = Pryexp(—qi (T = t))N (dv) = Payyexp(—q2 (T = t))N (d3) , (3)

where P, and P,; are the underlying asset prices at time ¢, and ¢; and g, are the
respective dividend yields which for simplicity are assumed to be constant over the life

of the contract. The variables d; and dy are given by

In(Piy/Pay) + (g2 — @1 4+ 0%/2) (T — 1)
"= VT 1 (4)

and

dQZdl_U\/T_t7 (5)

with N (.) representing the cumulative probability density function of a variable that

is normally distributed with zero mean and a standard deviation of one, and

o= \/G% + 03 — 2poi09, (6)

where o1 and o9 are the associated volatilities of assets 1 and 2 respectively and p

measures the correlation between assets 1 and 2.

3 Option Pricing During Financial Crises and Con-
tagion

This section investigates the effects of financial crises and contagion on the price of
exchange options between two assets, where an additional crisis transmission channel
between assets exists that operates through higher order comoments of asset returns.
The normality assumption underlying asset returns as embodied in the Wiener process

in the Black-Scholes framework of equation (2) is extended by specifying the following



generalized normal distribution (Fry, Martin and Tang (2010))*

f(rig, o) = exp [91Tf¢ =+ 927“§7t + 031140 + 947"‘;} =+ 957“%t7"2,t

+967”1,t7“§¢ + 97r§’7t + 987“1{t + Qgr;l,t — 7]] , (7)
where

Tit = In Pz‘,t —In Pz‘,t—1 (8)
is the log-return at time ¢ on the " asset, 1 is the normalizing constant with the
property

//f (r1,72) dridry = 1, 9)

and 0;,7=1,2---,9, are parameters.

An important special case of the generalized normal distribution in equation (7) is
that it contains the bivariate normal distribution as a special case when the following

restrictions are imposed

0.5 0.5
%:—T—g,ewz———g,ﬂw: py
—p L—p I—p

0, =0,Vi > 4, (10)

where p represents the correlation parameter between r; and ry. Reflecting the statisti-
cal features of asset prices during financial crises summarized in Table 2, the parameters
04 and 0, allow for skewness in the returns of assets 1 and 2 respectively, whereas the
parameters g and 0y allow for kurtosis in assets 1 and 2 respectively. Coskewess is
captured by the parameters 05 and fg. The first form of coskewness as represented
by the term T%,t’l"gﬂg, captures the interaction effect between the volatility of returns in
asset 1 and the mean in asset 2, while the second form of coskewness as represented
by the term 7"1,t"“§’t7 is the reverse, capturing the interaction effect between the mean

of returns in asset 1 and the volatility in asset 2.2

! The bivariate generalized normal distribution is an extension of the generalized normal distribution
investigated by Lye and Martin (1993).
2To allow for cokurtosis in the generalized normal distribution given in equation (7) the terms 7173,

r?r2 and riry can also be included.



3.1 The Bivariate Generalized Lognormal Distribution

In pricing options what is of interest is the joint distribution of prices over the life of the
exchange options contract. Given the returns distribution in (7), the price distribution

is obtained by using the transformation of variable technique

g (Pl,t7 PQ,t) = |J| f (ln Pl,t — lnPLt_l,ln P27t — h’l PZ,t—l) (11)
where
1= |5 (12
Pl,tPZ,t

is the absolute value of the Jacobian using the transformation in (8). Using this
expression for the Jacobian in (11), the bivariate distribution of prices conditional on

lagged prices is then given by

G( Py, Poy| Pry—1,Pay1) = exp [91 (InP;—In Pl,t_l)Q +60;(InPyy — In Pg’t_1)2
+03(InPry—InPyq)(InPoy —InPyy q)
+04(In Py —In Pl,t_l)g
+05(In Py —In Py 1)’ (In Py —In Pyyq)
+0s(In Py —In Py 1) (InPyy —InPyy )

+07 (In Py —n Py 1)* + 05 (In Py —In Py q)*
] 1
PPy

—|—09 (ln PQ’t — hl Pg’t_1)4 (13)

An important special case of (13) is obtained by imposing the bivariate normal
restrictions in (10) as the conditional price distribution reduces to the bivariate lognor-
mal distribution. Higher order comoments can be included in the bivariate distribution
by now allowing 0; # 0, ¢ > 4. For this reason, the conditional price distribution in
(13) represents a generalized lognormal distribution.

The properties of the generalized lognormal distribution in (13) are highlighted in

Figure 1 which gives both surface and contour plots for alternative parameterizations.
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For all parameterizations, conditioning is chosen as In P, 1 = InFP;_; = 1, while
p = 0. The normalizing constant 7 in (13) is computed using the procedure INTQUAD?2
in Gauss 10 which evaluates a double integral by Gaussian quadrature. As a check on
the numerical integrations, in the case of bivariate lognormality, the percentage error
in computing the normalizing constant 7 in (13) by numerical integration is around
2% for alternative values of 01,09 and p, compared to the analytical expression of
In (2ro105(1 — r?)0%).

The bivariate lognormal distribution given in Figures 1(a) and (b) is generated
by imposing the restrictions in (10). As p = 0, the two prices, P, and P, are
independently distributed with the joint distribution exhibiting a single peak. In the
context of exchange options whereby the contract is only exercised when Py > P r,
the pertinent area of the probability space in Figure 1 is represented by the area below
a 459 line in the contour diagrams.

Resetting the parameters that control the highest even moments to g = 0y =
—0.25, while still using the same parameter values for 61,60, and 03 results in a more
peaked joint price distribution in Figures 1(c) and (d). The effects of coskewness
are highlighted in the remaining plots in Figure 1 by changing the value of 05, while

imposing the restrictions of the following
0y =0,=-05, 03=00, 0,=00, 0O=0;=0, 6g=10,=—-0.25.

In Figures 1(e) and (f), the coskewness parameter is 5 = —0.5 which has the effect of
stretching the distribution in the direction of P;; resulting in the distribution of P,
conditional on P, exhibiting longer tails especially where conditioning corresponds
to relatively low values of P»;. This result occurs because for relatively low values of
Py, the “mean” part of the coskewness term given by In Po; — In P, 4, is negative
by definition. Combining this with the fact that 65 < 0, shows that for relatively
low values of P,;, the sign on the “variance” part of the coskewness term given by

(InPy—In Pl’t_l)z, is postive. As (InP;; —1In Pl’t_l)Z > 0 for all values of P, the

11



joint price distribution is stretched in the direction of P ;. By changing the coskewness
parameter to 65 = —0.8, Figures 1(g) and (h) show that there is even more stretching
of the joint price distribution in the direction of P, ;.

In Figures 1(i) and (j), the coskewness parameter is set at 65 = 0.5, which is
increased to 05 = 0.8 in Figures 1(k) and (1). In these two cases, there is now stretching
in the P,,; direction for relatively low values of P;;. This arises because for relatively
“large” values of P»,, the “mean” part of the coskewness term given by In P, —In Ps;_1,
is positive and when combined with 65 > 0 and (In P ; —In PLt_l)z > 0, the net effect

is a positive effect on the joint price distribution in the direction of P, ;.

3.2 The Effects on Exchange Options of Coskewness in the
Expiration Distribution

There are two natural ways that the generalized bivariate lognormal price distribution
can be introduced into the exchange options model. The first is through the generating
process of the joint distribution of returns on the two assets over the life of the exchange
option contract and the second is through the specification of the joint price distribution
at the time of maturity, namely for P, v and P, where T" is the maturity date of the
contract. In this section, the latter is discussed with special emphasis on the effects
of coskewness on the terminal distribution and the corresponding effects on the price
of the exchange option contract written at time ¢. The former case is discussed in the
following section.

Consider the following bivariate generalized lognormal (conditional) distribution

corresponding to the prices at maturity

g(Pir,Por| Py, Pay) = exp [91Z% + 9223 + 032129 + 942’? + 952322

+062125 + 0725 + 021 + Ooz5 — 1) (14)

)
PPy

where the coskewness parameters 05 and 0 have the values
05 = {0,—0.8,0.8}, 0¢ = {0,—0.3,0.3},

12
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Figure 1: Generalized joint lognormal price distributions, as given in equation (13).

0 0> 03 0s 05 b5 07 Os 09

ab —05 —05 0.0 0.0 0.0 0.0 0.0 0.0 0.0
cd —05 =05 0.0 0.0 0.0 0.0 0.0 —0.25 —0.25
ef -05 —-05 0.0 00 —-0.5 0.0 00 —-0.25 —0.25
gh —-05 —-05 0.0 00 —-0.8 0.0 0.0 —-0.25 —-0.25
ij =05 =05 00 00 05 00 00 —-0.25 —-0.25
kl -05 —-05 0.0 0.0 0.8 0.0 00 —-0.25 —-0.25
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while the remaining parameters are set at

0.5 0.5 0
1 1—[)27 2 1_p27 3

0, =00, 0g=0;=0, 0Os=10,=—0.25.

In the case of the exchange options model in Section 2, the standardised random
variables z; r and 2o 7, in (14) are chosen as

ImPr—InP,—(rf—q— 0.50%) (T —t)

o1/ (T —t)

InPyp—InPyy — (rf — g — 0.503) (T' — t)
z - )
>t (D] (T - t)

2T =

(15)

where all terms are as defined in Section 2.

The price of the exchange option is then given by

CtGN = eXp [—Tf (T - t)] / / (PLT - P2,T) g (Pl,T, P2,T| Pl,ta Pz,t) dPl,TdPQ,Ta (16)

0 PQyT
with the range of integration of P, 1 being from P, 7 to 0o, ensuring that only proba-
bilities where

Pir>Pr

are considered in the evalution of the exchange option. This choice of z; r and 25 in
(15) is adopted as the exchange options price CV is equivalent to the Black-Scholes
price given in (3) under the assumption of bivariate lognormality, that is, §; = 0,
1 > 4. For general parameterizations of the generalized bivariate lognormal distribu-
tion g (P, Por| Piy, Pay) , the evaluation of the integrals in (16) cannot be evaluated
analytically as in the case of the Black-Scholes exchange option price. Instead these
integrals are computed numerically using the Gaussian quadrature procedure INT-
GRAT?2 in GAUSS 10.

As a test of the quality of the numerical integrations, the exchange option price in
the case of bivariate lognormality is computed using the analytical expression in (3)
and compared to two prices based on numerical integration. The first numerically inte-

grated option price uses the analytical form of the normalizing constant of the bivariate
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lognormal distribution while computing the double integrals in (16) numerically. The
second numerically integrated option price uses the numerical form of the normaliz-
ing constant of the bivariate lognormal distribution while still computing the double

integrals in (16) numerically as well. Using as inputs into the exchange option

Pl,t = PZ,t == 1, q1 = 0047 2 = 005, T‘f = 01,

T—-t=1, 01 =09 =0.2, p = 0.5, (17)
the three exchange option prices are:
Analytical = 0.0810264353
Numerical with normalizing constant evaluated analytical = 0.0810264356
Numerical with normalizing constant evaluated numerical = 0.0810208315

The numerical price which uses the analyical expression of the normalizing constant
in the bivariate lognormal distribution is accurate to the 6 decimal place. In the
case where the option price is computed where both the normalizing constant 7 and
the double integrals in (16) are evaluated numerically, the exchange option price is
accurate to the 5" decimal place.

Table 3 gives the exchange option prices based on (16) for alternative values of
the coskewness parameters 05 and s, with the exchange option inputs given in (17).
The effect of increasing negative coskewness by allowing for larger negative values of
05, results in the joint generalized lognormal distribution stretching along the P r
axis. This raises the probability of higher payoffs, P, 7 — P, which, in turn, leads
to higher option prices. The same qualitative result occurs for increasing negative
skewness through larger negative values of fs. In the case of positive coskewness,
through either positive increases in 05 or g, the mass of the joint distribution now
moves in the direction of P with the joint distribution stretching along the P, p axis.
This corresponds to higher probabilities of lower payoffs, resulting in lower prices for

exchange options.
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Table 3:

The price of exchange options in (16) for alternative levels of coskewness in the
expiration bivariate price distribution in (14). Exchange option inputs are based on
(17) with the parameters of the bivariate generalized lognormal distribution set at

0.5 0.5 p

0h=————,0=——-03=——,0,=0.0,0;, =0,03 =6y = —0.1.
1 1_p27 2 1_p273 1_p274 , Ut » U8 9
05 Option Price, CtGN O Option Price, CtGN
0.0 0.0673 0.0 0.0673
-0.2 0.0708 -0.2 0.0684
-0.4 0.0731 -0.4 0.0701
0.2 0.0642 0.2 0.0663
0.4 0.0633 0.4 0.0653

3.3 Pricing by Monte Carlo Methods

To compute the option price in equation (1) assuming that returns at each point in time
over the life of the contract from ¢ to T, are based on either the bivariate generalized
normal distribution in (7) or the bivariate generalized lognormal distribution in (14),
an analytical solution is not available. One approach is to use Monte Carlo methods
to compute the option prices. The steps involved consist of replacing the conditional
expectation in equation (1) by simulating the asset price equation H = 10,000 times
using a discrete time step, and assuming that the disturbances are drawn from the
generalized normal distribution in equation (7). The option price is then computed as
the discounted payoff of the sample mean of the simulation runs
1 & . .
C’tGN =exp [—rf (T —1)] T Z Max (Pf,T - P217T, O) . (18)
i=1
To improve the accuracy of the simulated option price, a control variate is used by
augmenting the generalized normal distribution option price in equation (18) by the
difference between the analytical Black-Scholes price and the Monte Carlo price based

on bivariate normality.
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To determine the effects of contagion during a financial crisis on the price of ex-
change options, two simulation experiments are conducted. As a benchmark the price
of exchange options during the noncrisis period are assumed to correspond to the Black-
Scholes price whereby the Weiner processes of the two underlying assets the exchange
option contract is written on, follow a bivariate normal distribution. The exchange

option prices are evaluated using the following inputs

q1 = 0.04, q2 = 0.05, ry=0.1,

T—tZL 0'120'2:0.2, p:05, <19)

with the prices of asset 1 and asset 2 at time ¢ taking on values between 60 and 100 in

increments of 5

P, = {60,65,...,95,100},

Py, = {60,65,...,95,100} .

During the period of the financial crisis, additional contagious channels arise through
the higher order moments by assuming that the disturbances of the prices of the under-
lying assets follow a generalized normal distribution. To determine the potential size
of mispricing during the crisis period from ignoring the nonnormalities in returns, the
Black-Scholes prices are also computed in the crisis period using the implied volatility
and correlation of the returns based on the generalized normal distribution. The results

of two experiments are now presented.
3.3.1 Experiment 1

As Table 1 shows that returns during the financial crises tend to exhibit positive skew-
ness and coskewness, the bivariate generalized normal distribution is parameterized

accordingly in the following experiments. In the first experiment, the parameters of
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the generalized normal distribution in equation (7) during the crisis period are

0.5
63 = %7
—p

0, = 00, 05=00, 05=0.7, (20)

0 = 0y=—

0; = 0.0, Og=0y=—0.1,

with p = 0.5, which yields positive coskewness of 0.270 during the crisis period com-
pared to a value of zero coskewness in the noncrisis case. The noncrisis distribution
of returns is represented by the standardized bivariate normal distribution with zero
means, unit variances and correlation p = 0.5, which is obtained by imposing the
additional restrictions 0; = 0, i > 4, on the parameters in equation (7).

To determine the potential size of mispricing during the crisis period from ignoring
coskewness in returns, two exchange option prices are computed. The first is the
Black-Scholes price using equation (3). In computing this price in the crisis period the
parameter values for volatility and correlation are taken as the implied values associated
with the bivariate generalized normal returns distribution. Formally, this is achieved

by computing

U% = //(7”1 — u1)2 f(ri,re) dridry = 0.9642
O'g = //(Tg—uz)zf(Tl,Tg) dTldTg = 11222
o192 = //(7”1 — 1) (ro — pg) f (r1,72) dridry = 0.727,

where the means are computed as

W = //rlf (r1,79) dridrs, 1=1,2.

The value of the correlation parameter increases from 0.5 during the noncrisis period

to

p=222 _ 0672,
0102
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during the crisis period. The second price computed is the generalized normal exchange
option price based on (18), by simulating the two asset prices 10,000 times over the
life of the contract equal to 1 year in steps of At = 0.1.

The results of the simulation experiment are presented in Figure 2 with the Black-
Scholes price (CP*) given in Figure 2(a) and the generalized normal distribution price
(CtGN ) given in Figure 2(b). Inspection of the two graphs shows that option prices
computed according to CP° during a financial crisis understate the true price as rep-

resented by C“V | for all underlying asset price pairs under consideration.

(a) (b)
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Figure 2: Option prices during a financial crisis based on the parameterizations

in (20). Part (a) gives the Black-Scholes price CP° part (b) gives the Generalized
normal price CFV.

Figure 3 shows the extent of underpricing of exchange options in absolute and

percentage terms. Figure 3(a) reveals that the extent of underpricing in absolute terms
becomes higher as the exchange option moves from being out-of-the-money towards
being in-the-money. Inspection of the option prices generated reveals that the absolute
size of underpricing are on average, —0.35, —1.21 and —5.77, when the options are
out-of-the-money, at-the-money and in-the-money respectively.

The size of underpricing in percentage terms across the various asset price pairs

under consideration can be seen in Figure 3(b). On average, the exchange option price
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is understated by —29.47%, —17.77% and —23.00% when the options are out-of-the-

money, at-the-money and in-the-money respectively. Overall, for all the underlying
asset price pairs under consideration, the Black-Scholes prices in the crisis period un-

derprices exchange options by 25.30% when compared to C&, the price which correctly

allows for positive coskewness in the crisis period.
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Figure 3: Mispricing error of Black-Scholes during a financial crisis, based on

the parameterizations in (20). Part (a) is CP% — CEV, while part (b) gives
(CES/CEN — 1) x 100.

Figure 4 provides cross-sectional views of the exchange option prices computed
using CP¥ and those generated based on CEV | for selected prices of assets 1 and 2.

Panel (a) provides the results for price pairs for Py

{60,80,100} with P, ranging
from 60 to 100, while panel (b) is based on the price pairs for P, = {60,80,100} with

Py ranging from 60 to 100. For given price levels of asset 1, the size of underpricing
increases as the price of asset 2 falls from 100 to 60 in Panel (a) of Figure 4. Similarly,

for given price levels of asset 2, the size of underpricing increases as the price of asset
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1 rises from 60 to 100 in Panel (b) of Figure 4.
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Figure 4: Exchange option prices for generalized normal C" and Black-Scholes C2*
cases corresponding to various asset price pairs based on the parameterizations in (20).

3.3.2 Experiment 2

In the second experiment, an alternative form of coskewness is chosen to the one given
in experiment 1 by specifying the parameters of the generalized normal distribution in

the crisis period as

0 = Op=—— 3 = ——
94 - 00, 95 - 06, 96 - OO,

0; = 00,  65=0=—0.1, (21)

with p = 0.5 as before, which yields positive coskewness of 0.354 compared to a value

of zero coskewness in the noncrisis case.

21



To compute the correlation between the two asset markets, the variances and co-

variance are evaluated as

a% = //(Tl — ul)z f(ri,m2) dridry = 0.9692,
o2 = //(7"2 — u2)2 f (r1,7rs) dridry = 0.8712,
012 = //(Tl — y) (ra — po) f (r1,72) dridry = 0.466,

where the means are computed as

My = //Tif (r1,72) drydrs, 1=1,2.

The correlation parameter during the crisis period equals

p=222 _ .553.
0102

Figure 5 shows the prices of European exchange options during the crisis period
where the asset distribution is bivariate generalized normal and based on the parame-
terization in (21). Panel (a) gives CP° the Black-Scholes price which is incorrectly
based on bivariate normality, while panel (b) gives C&V, the generalized normal price
which correctly allows for positive coskewness in the crisis period. The results show

that CP?° misprices the exchange option across the various asset price pairs under
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consideration.
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Figure 5: Option prices during a financial crisis based on the parameterizations
in

(21). Part (a) gives the Black-Scholes price C2, part (b) gives the Generalized
normal price CFV.

The extent of mispricing of exchange options, in absolute and percentage terms,
is highlighted in Figure 6. Figure 6(a) reveals that in absolute terms, the exchange
option is mostly underpriced when it is out-of-the-money and is also underpriced when
at-the-money and in-the-money. Inspection of the option prices reveals that when
the options are out-of-the-money, 64% of them are underpriced with the average size
of underpricing being equal to —0.03, with the remaining 36% overpriced with the
average size of overpricing equal to 0.01. For at-the-money and in-the-money options,

the absolute size of underpricing are on average, —0.26 and —2.50 respectively.

The size of mispricing in percentage terms across the various asset price pairs under

consideration is highlighted in Figure 6(b). The option prices are understated on

average with few exceptions, by —9.15% (out-of-the-money), —4.29% (at-the-money)
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and —10.89% (in-the-money).?
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Figure 6: Mispricing error of Black-Scholes during a financial crisis, based on
the parameterizations in (21). Part (a) is CP29 — CEN, while part (b) gives
(CPS/CFN — 1) % 100.

Figure 7 provides a cross-sectional view of the exchange option prices computed
using CP% and those generated based on CFV, for selected values of assets 1 and

2 under the parameterization in (21). Panel (a) is based on price pairs for P, =

{60,80,100} with P, ranging from 60 to 100, while panel (b) is based on the price pairs
for P, = {60,80,100} with P, ranging from 60 to 100. For given price levels of 80 and
100 for asset 1, the size of underpricing increases as the price of asset 2 falls from 100 to
60 in Panel (a) of Figure 7. For the price level of 60 for asset 1, the difference between
the exchange option prices based on CP° and C&N appears to be small. In this case,
the exchange option prices are either at-the-money or out-of-the-money. Similarly, for
given price levels of 60 and 80 for asset 2, the size of underpricing increases as the price
of asset 1 rises from 60 to 100 in Panel (b) of Figure 7. For the price level of 100 for asset

2, the difference between the exchange option prices based on CP° and C“Vis also

3The few exceptions correspond to some out-of-the-money options with the average size of over-
pricing equaling 1.00%.
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small. In this case, the exchange option is either at-the-money or out-of-the-money.
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Figure 7: Exchange option prices for generalized normal C¢" and Black-Scholes C2*
corresponding to various asset price pairs based on the parameterizations in (21).

4 Portfolio Effects of Financial Crises

The risks arising from having open positions in exchange options can be hedged. A
common approach to hedging an option is delta hedging where an offsetting underlying
asset position equivalent to the option face value multiplied by its current delta is
taken. For a call option, the delta is simply given as the change in the call option
value with respect to a change in the asset price. When an offsetting delta equivalent
position is held against an option position, the overall position is considered delta
neutral. In this situation, the combined option and hedge position will show no profit
or loss for small changes in the underlying asset price (see Hull, 1970). The deltas of

the exchange option with respect to the two underlying assets can likewise be derived
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from the pricing equation in (3) so that offsetting positions may be taken in each of
the respective assets to hedge against the underlying sources of price risks. In this
section, deltas derived analytically from the Black-Scholes pricing equation in (3) are
computed for a selected range of prices for the underlying assets. These deltas which
are computed based on the assumption of bivariate normality are then compared to
the deltas computed from numerically generated exchange option prices that take into
account of higher order comoments, including coskewness during the crisis period. The
difference in the analytical and simulated deltas correspond to the hedging errors that
may result from using the Black-Scholes option pricing equation in the presence of
coskewness during periods of financial crisis and contagion. In presenting the delta
results, the two simulation experiments performed in the previous section are adopted
again.

The deltas of the Black-Scholes exchange option with respect to the underlying
assets 1 and 2, are obtained by differentiating equation (3) with respect to P;; and

P»;, the prices of the two assets (see Appendix A for details). They are given as

BS

T = el (T )N (@), 22)
BS

T = —ep(a (T - N (). 23)

In the case of the generalized normal option price in (18), the deltas need to be com-
puted numerically. Using a step interval of 1, the numerical derivatives to compute the

delta for each asset are as follows

GN

8@% - CGN}Ple-H Py=jtk CGN‘PI:J‘ Po=j+k’ (24)
Lt 1 Pi=j, Pa=j+k ’ ’
GN

88(53 - CGN}Plzj Pa=jth+1 CGN‘Plzj Po—jth? (25)
2t | Py=j, Pa=j+k ’ ’

where
j = {60,70,80,90,100},
k= {-20,-15,-10,-5,0,5,10,15,20} .
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Table 4 presents the deltas in (22) to (25) for various asset price pairs using the
parameterization in experiment 1 given in (20). The deltas are computed for P, =
{60, 70,80,90,100} , each paired with prices of asset 2 that are higher than the level
of P; to a maximum of 20 at increments of 5, equal to the level of P; and lower than
P, to a maximum of 20 at intervals of 5. These scenarios correspond to the exchange
option being out-of-the money, at-the money and in-the-money respectively.

The deltas corresponding to asset 1 are positive as increases in the price of the
underlying asset 1 provides the holder of the exchange option with the right to exchange
asset 2 for the now more valuable asset 1. The deltas corresponding to asset 2 are
negative as increases in the price of the underlying asset 2 decreases the value of the
exchange option as one has to give up a now more valuable asset 2 in exchange for
asset 1 in exercising the option.

As the exchange option moves from being out-of-the-money to being in-the-money;,
the value of delta with respect to P; becomes larger while the value of delta with
respect to P, becomes more negative. This is the case for deltas based on the Black-
Scholes pricing equation as well as those based on the generalized normal exchange
option price.

Across all asset price pairs under consideration, the positive deltas generated for
the generalized normal exchange option prices are larger than the deltas based on
Black-Scholes. As for the deltas of exchange options with respect to Ps, the deltas
corresponding to the generalized normal option prices are consistently more negative
than those based on Black-Scholes. Moreover, for certain price pairs, the delta associ-
ated with the generalized normal options are greater in absolute terms than unity. In
contrast, and by construction, the deltas associated with the Black-Scholes options are
all between 0.0 and 1.0. This result suggests that during financial crises, the incorrect
adoption of Black-Scholes delta hedging may lead to an under-estimate in absolute

terms of the quantities needed of the underlying assets in the portfolio.
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Inspection of Figure 8 reveals that as the exchange option moves from out-of-the-
money to in-the-money, the level of the differences in the deltas computed based on
the generalized normal and Black-Scholes option prices, rises nonlinearly. When the
exchange option is in-the-money, the level of the differences in the deltas is higher
at lower values of P; for each given value of P, — P,. The reverse occurs when the

exchange option is out-of-the-money, suggesting the presence of a level effect.
)

0.40 —— Py = 60, P, = {40,45,...,60....,75,80)
— - Py = 70, P, = {50,55....,70....,85,90}
0.35 P, = 80, P, = {60,65....,80....,95,100}
— — - Py =90, P, =1{70,75...90....105,110)
Py = 100, P, = {80.85.....100.....115,120}

Pi—P,

Figure 8: Differences between generalized normal and Black-Scholes deltas using
the parameterization in (20). In Panel (a), the generalized normal delta is based

n (24) and the Black-Scholes delta is based on (22) for asset 1. In Panel (b), the
generalized normal delta is based on (25) and the Black-Scholes delta is based on
(23) for asset 2.

The results for the Black-Scholes and generalized normal deltas based on the second
experiment using the parameterization in (21), are given in Table 5 using the same
pairs of prices as that used in Table 4. A comparison of Tables 4 and 5 shows that

the deltas based on Black-Scholes option prices for both assets are fairly insensitive to
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Table 4:

Deltas corresponding to asset price pairs based on the parameterizations given in (20).

Pi—P;
-20 —-15  -10 -5 0 5 10 15 20
P= 60
9c>° 0.060 0.119 0216 0359 0535 0.714 0.852 0.928  0.955
o 0.083  0.153 0274 0451  0.692 0970 1208 1.335  1.371
o —0.042 —0.087 —0.168 —0.295 —0.465 —0.651 —0.809 —0.904 —0.942
S —0.050 —0.096 —0.187 —0.333 —0.555 —0.841 —1.134 —1.313 —1.382
P=10
2 0.089  0.155 0252 0.382 0535 0.690 0.818 0.903  0.944
u 0.116  0.192 0314 0478 0.689 0925 1.151 1.287  1.357
o —0.064 —0.117 —0.200 —0.317 —0.465 —0.625 —0.769 —0.872 —0.926
o —0.073 —0.129 —0.224 —0.362 —0.559 —0.802 —1.058 —1.250 —1.356
P= 380
o 0119  0.188 0282 0401 0535 0.671  0.790 0877  0.928
S 0150 0234 0348 0495 0.686 0.894 1.095 1.244  1.333
o> —0.087 —0.144 —0.226 —0.334 —0.465 —0.606 —0.736 —0.839 —0.904
o —0.098 —0.159 —0.255 —0.386 —0.561 —0.772 —0.999 —1.190 —1.316
P=90
oz 0.146 0216 0306 0415 0535 0.657 0.766  0.852  0.909
S 0181 0270 0376 0512 0683 0.868 1.050 1.204  1.298
% —0.110 —0.168 —0.248 —0.348 —0.465 —0.590 —0.709 —0.809 —0.880
w —0.124 —0.191 —0.281 —0.404 —0.564 —0.750 —0.955 —1.142 —1.267
Py= 100
o 0172 0241 0327 0427 0535 0645 0.746  0.829  0.890
o 0210 0295 0402 0527 0682 0847 1.016 1.165  1.264
o —-0.131 —0.190 —0.266 —0.359 —0.465 —0.578 —0.686 —0.781 —0.855
o —0.145 —0217 —0.304 —0.416 —0.565 —0.732 —0.916 —1.092 —1.223

oP;
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the change in coskewness arising from the change in parameterizations of experiments
1 and 2. This is not the case for the deltas based on generalized option prices where
the deltas corresponding to both assets are uniformly higher in absolute terms for both
experiments. For example, for the at-the-money options with P, = P, = 80, the Black-
Scholes deltas are 0.535 and 0.535 for experiments 1 and 2, whereas the corresponding
generalized normal deltas are respectively 0.686 and 0.613, a reduction of over 10%.
Finally, a comparison of the Black-Scholes and generalized normal deltas in Figure
9 reveal the same qualitative patterns as they do for the deltas reported in Figure 8
for the first experiment. In particular, as the exchange option moves from out-of-the-
money to in-the-money, the absolute differences in the deltas computed based on the

generalized normal and Black-Scholes option prices, rises nonlinearly.
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Deltas corresponding to asset price pairs based on the parameterizations given in (21).

Table 5:

Pi—P;

-20 —-15  -10 -5 0 5 10 15 20
P= 60
9c>° 0.064 0124 0222 0362 0536 0711 0.848 0925 0.954
o 0067 0131 0241 0399 0618 0841  1.021 1129 1174
8> —0.045 —0.091 —0.172 —0.298 —0.464 —0.647 —0.803 —0.901 —0.941
S —0.039 —0.082 —0.165 —0.297 —0.498 —0.732 —0.954 —1.105 —1.179
P=10
2 0.094 0.161 0257 0386 0.536 0.687 0.814  0.899  0.942
u 0.098  0.170 0276 0424 0615 0806 0978  1.091  1.155
o —0.068 —0.121 —0.203 —0.319 —0.464 —0.621 —0.764 —0.867 —0.924
o —0.060 —0.112 —0.197 —0.322 —0.501 —0.701 —0.900 —1.051 —1.148
P= 380
o 0124 0193 0287 0403 0536 0.669 0.786  0.873  0.925
S 0129 0207 0307 0441 0613 0781 0937  1.052  1.129
o> —0.091 —0.148 —0.229 —0.336 —0.464 —0.602 —0.731 —0.834 —0.901
o —0.083 —0.143 —0.225 —0.344 —0.504 —0.676 —0.852 —1.001 —1.107
P=90
oC>" 0152 0222 0311 0418 0536 0.655 0.762  0.848  0.906
S 0157 0236 0333 0457 0611  0.760 0901  1.017  1.100
% —0.114 —0.172 —0.251 —0.349 —0.464 —0.587 —0.704 —0.803 —0.875
w —-0.107 —0.169 —0.250 —0.360 —0.506 —0.659 —0.817 —0.961 —1.068
Py= 100
o 0177 0246 0331 0429 0536 0643 0.742 0.825  0.886
o 0.187 0259 0356 0470  0.609  0.741  0.874  0.988  1.070
o —-0.135 —0.194 —0.269 —0.360 —0.464 —0.574 —0.681 —0.776 —0.850
o —-0.129 —0.192 —0.270 —0.373 —0.508 —0.647 —0.789 —0.924 —1.029

oP;
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Figure 9: Differences between generalized normal and Black-Scholes deltas using
the parameterization in (21). In Panel (a), the generalized normal delta is based

n (24) and the Black-Scholes delta is based on (22) for asset 1. In Panel (b), the
generalized normal delta is based on (25) and the Black-Scholes delta is based on
(23) for asset 1.

5 Conclusions and Implications for Portfolio Man-
agement

The recent financial crises, including subprime, the Great Recession and the European
debt crisis, revealed additional crisis transmission channels operating through higher
order comoments of asset returns. Asset mispricing can be particularly significant
during periods of financial crisis and contagion. Financial institutions which originate
options such as the exchange option may engage in delta hedging in order that they earn
premiums from writing the options without the accompanying risk exposures. However,

if their delta hedging strategies are based on the incorrect pricing formulation that do
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not take into account the presence of coskewness during periods of crisis, the potential
losses can be significant, as shown in this paper. This has important implications for
market participants engaged in the hedging of financial risks and for financial regulators
seeking to manage risks across the financial institutions. Mispricing of assets during
periods of financial crisis and contagion could have systematic implications for the
financial stability of the economies.

The key implication of the results of the paper is the importance of pricing higher
order moments, especially during financial crises. Option prices based on Black-Scholes
assumptions, and in particular, multivariate normality, can result in significant mispric-
ing of options. The paper provided one strategy for embedding higher order moments
into the calculation of option prices, but alternative strategies also exist as well. More-
over, the paper showed the importance of pricing the risks of higher order moments
to minimize the exposure of portfolios to price movements in market during financial
crises. Whilst this analysis was conducted through the construction of delta-hedged
portfolios, the analysis suggested the importance of expanding the set of Greek hedging
parameters to include hedging strategies that explicitly take into account higher order
moment behavior of returns, including Greeks that capture coskewness and cokurto-
sis. An alternative approach is to construct a dynamic hedge under various scenarios
including an allowance for higher order moments in the returns generating process as

well as allowing for varying rebalancing frequencies.
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A Appendix: Derivation of Deltas for An Exchange
Option

From equation (3), the price of a European exchange option at time ¢ to exchange asset

2 for asset 1 at time 7T, is
CP% = Pryexp(—qi (T — )N (d1) — Poyexp(—qo (T — t))N (d2) ,

where P, ; and P, are the underlying asset prices of assets 1 and 2 respectively, ¢; and

q2 are the respective dividend yields and

g = P/ Po) + (62— + 02/2) (T —1t)
1 o/ (T —t) ’

dQZdl_U\/T_t7

with N (.) representing the cumulative probability density function of a variable that

is normally distributed with zero mean and a standard deviation of one, and

— 24 42
0 =1/0]+ 05— 2poi02,

where o1 and oy are the volatility rates of assets 1 and 2 respectively and p measures
the correlation between the two assets.

The partial derivatives of d;and dy with respect to P; ; are

ady 1 1 <1> B 1
OP1y  o\/(T —t) ﬁpu Py o/ (T — t)PLt7

and
dy 1
0Py o\/(T — t)PLt’
respectively. It follows that
Ody Ody
= . 26
0Py 0Py, (26)
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Now, an expression which links d2 and d3 may be derived from equation (5), with

d; in the second line of derivation below substituted by equation (4)

= &+ 0* (T 1)~ 2d10/(T 1),

In(Pyy/Pay) + (o — qu +0%/2) (T —t)
o/ (T —1)
= d% —2In (Pl,t/Pz,t) -2 ((J2 - (11) (T - t) : (27)

= & +0*(T—-1t)—20 (T —1t),

Using the relationship between d?and d3, the relationship between the normal den-
sity functions of the variables d; and ds can be derived. The normal density functions

of d; and d are given by

1
n(dy) = E exXp (—d%/2) ) (28)
d
an ) 2
n(ds) = \/72? exp (—d2/2) ) (29)
respectively.

Substituting the expression linking d?and d3 into equation (29) yields the following

1 —[d} —2In (Pyy/Pay) — 2 (g2 — qu) (T — )]
n(dy) = Ton exp ( 5 > )

= \/12? exp (—d?/2) exp[In (Pry/Pay) + (o — ) (T —t)],

which is expressed simply as

n(dz) =mn(di)exp[In(Pr/Poy) + (g2 — 1) (T = t)],

using equation (28). Upon further algebraic simplification, the equation for n (dz)
becomes
n(dz) =n(dy) (Prs/Pog) exp (g2 — qu) (T — )] (30)
Partially differentiating the valuation equation for the exchange option with respect
to P, yields

oCcrs ON (dy)
o exp(—q1 (T' = 1))N (dr) + Pryexp(—q (T = 1)) 9P,
ON (dy)
—P, —q2 (T — ,
2, €XP(—¢2 ( ) aPy,
od
= exp(—qu (T = H)N (d) + Pryexp(—qi (T = t))n (da) 55
1,t
Od,

—Pyyexp(—q2 (T —t))n (ds) b,
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Substituting out n (dy) and 22 using equations (30) and (26) respectively yields

Bpl,t

oCBS od,

P, = exp(—q (T —t))N (dy) + Prrexp(—q (T —t))n (dy) P,

od
—Pyrexp(—qa (T — 1)) {n(di) (Prs/Par) exp (g2 — 1) (T — t)]} 8P11t’
which ultimately simplifies to
acBS
P = exp(—q1 (T'—t))N (dy) . (31)

1,

Equation (31) shows how the value of the exchange option varies with changes in
the underlying asset value given by P;;. A similar expression can be derived which
gives the sensitivity of the option value to changes in the other asset value given by
Py

Ody 1 1 <_H¢> v
0Py o/ (T —t) % P22,t o/ (T — ?5)]32,t7
8d2 8dl

1
0P, B 0Py, B o/ (T — t)PM'

Using equations(28) and (27), an expression for n (d;) which provides a link to n (ds)

is derived P
i) =) (F2) exp - (a2~ ) (7 0. )
t
Partially differentiating the valuation equation for the exchange option with respect

to Py, yields

o0CBS ON (d
— Pexp(—qy (T — 1)) 22 D)

0Py 0Py,
ON (d
~[Porexptar (- 1) 2 4 (g (7 )N ()]
0Py
ad
= Pryexp(—qi (T —t))n (dy) ap;
ddy
—Pyiexp(—qo (T —t))n (dz) —exp(—q (T —t))N (dg) .
0Py,

Substituting out n (d;) and £.flllt using equations (32) and (26) respectively yields
oCPBs Py t) Jdy
= Pexp(—q (T —1t)) |n(dy) | == )exp|— (g2 — T—1t
S = Pues(a (- 0) () (5 el @ —a) (- 0]] 552
ad
—Pyyexp(—qa (T —t))n (d2) 8P2 —exp(—q2 (T = 1))N (d2) ,

2.t
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which upon rearranging becomes

acBS
0Py

= —exp(—¢2 (T = t))N (da) . (33)

Equation (33) provides the change in the exchange option value with respect to a

change in the value of the other underlying asset P .
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