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A tractable framework for zero-lower-bound
Gaussian term structure models

Leo Krippner�y

12 August 2013

Abstract

When nominal interest rates are near their zero lower bound (ZLB), as in
many developed economies at the time of writing, it is theoretically untenable
to apply the popular class of Gaussian a¢ ne term structure models (GATSMs)
given their inherent material probabilities of negative interest rates. Hence, I
propose a tractable modi�cation for GATSMs that enforces the ZLB, and which
approximates the fully arbitrage-free but much less tractable framework proposed
in Black (1995). I apply my framework to United States yield curve data, with
robust estimation via the iterated extended Kalman �lter, and �rst show that
the two-factor results are very similar to those from a comparable Black model.
I then estimate two- and three-factor models with longer-maturity data sets to
illustrate that my ZLB framework can readily be applied in circumstances would
computationally burdensome or infeasible within the Black framework.
JEL: E43, G12, G13
Keywords: zero lower bound; term structure of interest rates; Gaussian a¢ ne

term structure models; shadow short rate; shadow term structure

1 Introduction

In this article I propose a tractable framework for imposing the zero lower bound
(hereafter ZLB) for nominal interest rates on Gaussian a¢ ne term structure models
(hereafter GATSMs).
Ruling out negative interest rates in term structure models is desirable on theo-

retical and practical grounds, as I expand on subsequently below, and I use GATSMs

�Reserve Bank of New Zealand and Centre for Applied Macroeconomic Analysis. Email:
leo.krippner@rbnz.govt.nz. This paper supersedes the CAMA Working Paper 5/2012, �Modifying
Gaussian term structure models when interest rates are near the zero lower bound�.
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Bank of Japan, the Federal Reserve Board, and the Federal Reserve Banks of St. Louis, San Francisco,
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Scott Richard for his observations that led to section 4.4.
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as the basis for the framework because they are very �exible and tractable. Specif-
ically, GATSMs with any number of factors and any factor inter-relationships retain
both closed-form analytic solutions for pricing standard interest rate instruments (e.g.
bonds and options) and multivariate-normal transition densities for the state variables.
Those features make GATSMs straightforward to apply and estimate relative to other
term structure models. As such, Hamilton and Wu (2012) introduces GATSMs as �the
basic workhorse in macroeconomics and �nance�and notes fourteen recent examples
of their application. Rudebusch (2010) surveys GATSM applications in macro-�nance,
and Diebold and Rudebusch (2013) provides an overview of many forecasting, �nance,
and macro-�nance applications.1

However, it is well acknowledged that GATSMs cannot be theoretically consistent
in the �real world�where physical currency is available (e.g. see Piazzesi (2010) p.
716). The inconsistency arises because any unconstrained Gaussian process for short
rate dynamics technically implies non-zero probabilities of negative interest rates for
all maturities on the term structure. If negative interest did occur, one could realize an
arbitrage pro�t by borrowing funds (therefore receiving the absolute interest rate) and
holding them as physical currency (with a known return of zero). Alternatively, one
could sell bond options based on the non-zero probabilities of negative interest rates
in GATSMs, but with no probability of an out-of-the-money expiry in practice.
Despite that known theoretical inconsistency, GATSMs are often applied with the

assumption that the inherent probabilities of negative interest rates in GATSMs are
su¢ ciently small to make such models immaterially di¤erent to a �real world�model
subject to the ZLB.2 While that assumption may have been tenable historically, when
interest rate levels relative to their typical volatilities remained well above zero, it is
obviously untenable in many developed economies at the time of writing. For example,
near-zero policy interest rates have been maintained in Japan since the 1990s, in the
United States and the United Kingdom since late-2008/early-2009, and in the euro area
and non-euro European economies over recent years. Moreover, the practical constraint
of the ZLB is evidenced by many of those countries having adopted unconventional
monetary policy easing (e.g. large-scale asset purchases and/or explicit guidance on
future policy rates) to circumvent the constraint on easing monetary policy via the
conventional method of lowering interest rates. The ZLB constraint is also apparent in
the short- and mid-maturity interest rates of many of the countries already mentioned,
being at levels well within their typical historical volatilties.
In near-zero interest rate environments, the material probability of negative interest

rates in GATSMs in turn implies model mis-speci�cation relative to the data being
modeled. In essence, if term structure data are materially constrained by the ZLB but
the GATSM applied to the data assumes no constraints, then the estimated GATSM
and its state variables cannot provide a valid representation of the term structure and
its dynamics. Such mis-speci�cations will a¤ect even routine GATSM applications,
such as monitoring the level and shape of the estimated term structure to provide a

1Diebold and Rudebusch (2013) summarizes the development and application of arbitrage-free
versions of the Nelson and Siegel (1987) class, which are an empirically reliable sub-class of GATSMs.
Joslin, Singleton, and Zhu (2011) provides an empirically reliable method for estimating GATSMs in
general, and Hamilton and Wu (2012) provides another approach.

2See, for example, Piazzesi (2010) p. 716 or Filipovíc (2009) p. 86. However, the assumption is
typically left implicit.
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gauge of the stance of monetary policy. The implications of such mis-speci�cations
may be further compounded for any macro-�nance relationships established between
GATSMs and macroeconomic data (e.g. measures of in�ation and real output growth),
because macroeconomic data are not constrained to be non-negative.
Black (1995, hereafter Black) provides a straightforward and theoretically appeal-

ing framework that can be used in conjunction with GATSMs to eliminate negative
interest rates.3 The Black framework is based on the observation that physical cur-
rency e¤ectively provides an option against negative interest rates at each point in
time. Speci�cally, the Black short rate may be de�ned as r

¯
(t) = max fr (t) ; 0g, where

r(t) is the �shadow short rate�that is free to evolve with negative and positive values.
Unfortunately, Black-GATSM implementations (i.e. using GATSMs to de�ne the

shadow short rate r(t) within the Black framework) result in models with limited
tractability. For example, even the simplest Black-GATSM, the one-factor Black-
Vasicek (1977) model investigated in Gorovoi and Linetsky (2004), does not result
in a closed-form analytic solution. Speci�cally, it requires the numerical evaluation
of relatively complex Weber-Hermite parabolic cylinder functions and numerical in-
tegration. In addition, the Gorovoi and Linetsky (2004) approach does not appear
to generalize to multiple factors.4 To implement two-factor Black-GATSMs, Bom�m
(2003), Ueno, Baba, and Sakurai (2006), Ichiue and Ueno (2007), Kim and Single-
ton (2012), and Ichiue and Ueno (2013) variously apply the purely numerical methods
of �nite-di¤erence grids, interest rate lattices, and Monte Carlo simulations (to US,
Japanese, and UK data). Bauer and Rudebusch (2013) and Richard (2013) are exam-
ples of three-factor Black-GATSM implementations, but they also illustrate the practi-
cal challenge of applying numerical methods for higher dimensional models.5 In general,
the number of evaluations required for numerical methods increases as the power of the
number of factors and precision declines for longer times to maturity.6 Therefore, while

3Of course, a prevalent literature has evolved over several decades using non-Gaussian dynamics
designed to avoid negative interest rates in term structure models; e.g. James and Webber (2000) pp.
226-33 discusses a variety of positive interest rate models. Given my focus is on Gaussian models,
I do not discuss positive interest rate models further beyond the following comments in this context
of this article: (1) Such models lose the potential information provided by the �shadow short rate�
and �shadow term structure�, as will be discussed subsequently in the main text; (2) Such models
inevitably result in limited �exibility and/or tractability relative to GATSMs. For example on the
latter point, closed-form analytic solutions and transition densities are not available for arbitrary
speci�cations of multifactor Cox, Ingersoll, and Ross (1985)/square-root models, and even the special
case of independent factors requires the relatively complex evaluation of the product of noncentral
chi-square distributions (e.g. see Chen and Scott (1992) for the two-factor case and the comment in
Piazzesi (2010) p. 727 in general); and (3) Such models may imply unrealistic interest rate dynamics
near the ZLB. For example, Cox, Ingersoll, and Ross (1985)/square-root models have the inherent
property that interest rate innovations approach zero as interest rates themselves approach zero, which
is counter to empirical evidence.

4See Kim and Singleton (2012) p. 11. Ichiue and Ueno (2006) and Ueno, Baba, and Sakurai (2006)
apply the Gorovoi and Linetsky (2004) model to the Japanese term structure.

5Bauer and Rudebusch (2013), which uses Monte Carlo simulation and data out to 10 years time
to maturity, employs the simpli�cation that the parameters used to estimate the state variables in
the ZLB-constrained periods are obtained from a GATSM estimated with data from the non-ZLB-
constrained period. Richard (2013) uses a lattice method and data out to 30 years time to maturity,
but on p. 40 notes that �it requires a long time, literally a month, on large and fast computers to
estimate�.

6See James and Webber (2000) for discussion on these points. For example, the standard deviation
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Black-GATSMs have arbitrary �exibility in principle, in practice their rapid decline in
tractability for more than two factors and longer times to maturity would make imple-
mentation computationally burdensome or practically infeasible. Therefore, the Black
framework cannot in practice compete with the full �exibility that is currently taken
for granted when applying multifactor GATSMs to data sets of any maturity span.
The alternative and tractable ZLB framework that I propose in this article is based

on the Black foundation of the optionality provided by physical currency. However, by
imposing a slight approximation to Black, as I will de�ne precisely in sections 2 and 3 in
light of the appropriate notation and background, my ZLB framework in the Gaussian
context results in simple closed-form expressions for the physical currency option e¤ect
as a function of time to maturity. Adding that expression to the shadow-GATSM for-
ward rate curve results in a ZLB forward rate curve with a simple closed-form analytic
expression. The result is general and so applies to any shadow-GATSM speci�cation.
Hence, irrespective of the GATSM used to represent the shadow short term structure,
ZLB forward rates will always be a function of just scalar exponential functions and the
standard cumulative normal function. ZLB-GATSM interest rates and ZLB-GATSM
bond prices are obtained using standard term structure relationships; respectively, the
integral of ZLB-GATSM forward rates over time to maturity and the exponential of
that (negated) integral. The integral is necessarily numerical in the Gaussian con-
text, but the nature of the ZLB-GATSM forward rate expression guarantees that it
will always be univariate (with respect to time to maturity) and therefore elementary.
In turn, the tractability of my ZLB-GATSM framework combined with multivariate-
normal transition densities for the state variables facilitates the estimation of ZLB
models with yield curve data that is materially constrained by the ZLB.
Notwithstanding the relative bene�t of tractability o¤ered by my ZLB-GATSM

framework, the cost is that it is not a theoretically self-consistent (i.e. fully arbitrage-
free) model of the term structure. That said, the relative bene�ts of tractability may
outweigh the cost of theoretical consistency for many practical applications.7 Indeed,
a positive trade-o¤ is suggested by my initial empirical results; i.e. the shadow short
rates I obtain with my two-factor model applied to United States yield curve data
with a 10-year maturity span are very similar to comparable results from a Black
implementation. Furthermore, to show that my framework readily generalizes to more
than two factors and longer maturity spans, I estimate two- and three-factor models
with data sets out to 30 years time to maturity. I also establish that a robust method
should be used for estimation, to appropriately allow for the inherent non-linearity of
the ZLB-GATM framework, and that result may hold implications for the application
of Black-GATSMs. In particular, I �nd that the extended Kalman �lter gives very
misleading estimates relative to those from an iterated extended Kalman �lter.
The remainder of the article is arranged as follows. In section 2, I �rst outline the

Black framework and its practical intuition, and then show how the Black framework

of Monte Carlo simulation results increases as the square root of time to maturity, and grid size and
round-o¤ issues can become material for �nite di¤erence methods with longer times to maturity.

7An analogy in this regard is that �nancial market practitioners, central bankers, and academics
popular often apply the Nelson and Siegel (1987) model in its original (i.e. non-arbitrage-free) form,
rather than using arbitrage-free Nelson and Siegel (1987) models or GATSMs. The implementation
is more straightforward and the empirical results are similar. See Diebold and Rudebusch (2013) for
further discussion.
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may be re-expressed in terms of forward bond prices. The latter provides the link to
section 3, where I show precisely how I approximate Black forward bond prices with
a slightly alternative expression that leads to much more tractable results. Section 4
derives the expressions for my ZLB framework when GATSMs are used to represent the
shadow short rate and the yield curve, which results in very straightforward closed-form
analytic expressions for ZLB forward rates. Section 5 �rst shows how the shadow-
GATSM state variable dynamics and the associated ZLB forward rate expressions
may be used to form a state space representation for the ZLB term structure. It
then presents the estimated shadow short rate results from various speci�cations and
estimations, as mentioned earlier. Section 6 concludes.

2 The Black framework

In this section, I �rst summarize the foundations of the Black framework as they have
already presented in the literature to date, and I also provide relevant intuition. I then
re-express the Black framework in terms of Black forward bond prices, which provides
the link to my proposed ZLB framework in section 3.

2.1 Black short rates and shadow/ZLB yield curve intuition

The fundamental building blocks for the Black framework are short rates r
¯
B (t) that

are constrained to be non-negative via the following mechanism:

r
¯
B (t) = max f0; r (t)g (1)

where r(t) is the (default-free and risk-adjusted nominal) shadow short rate that can
adopt negative values.8 In section 4, I will specify a GATSM process for r(t), but at
this stage I leave the exposition general to allow for any dynamic process. Note also
that I use the underscore here and in all notation following to indicate quantities that
are bounded below by zero, and I omit the underscore for shadow quantities.
A given shadow short rate process subjected to the Black non-negative mechanism

will produce a dynamic process for the Black short rate r
¯
B (t) and, as I will outline in

the following sub-section, the process for r
¯
B (t) will in turn generate Black bond prices

P
¯
B (t; �), at time t and as a function of time to maturity � . The Black yield curve is then
the associated interest rate function R

¯
B (t; �), which will be bounded below by zero at

all times t and times to maturity � . Note that a straightforward generalization at this
stage would be to include a non-zero lower bound via r

¯
B (t) = max frL; r (t)g, where

rL could be mildly positive or negative depending on institutional arrangements and
market conditions.9 That said, I retain a zero lower bound for simplicity in notation

8Black did not actually include the given expression, because it was a conceptual and descriptive
paper. The applications of the Black framework referenced in section 1 all specify the expression
while rightfully attributing it to Black. The name �shadow short rate�is from Black, but it does not
necessarily imply a shadow price in the usual economic sense; i.e. it does not appear to have been
obtained as a marginal change for a given objective function with respect to a constraint (although it
may be possible to do so).

9For example, the Bank of Japan�s policy operations have resulted in overnight and short-maturity
rates prevailing at around positive 0.1 percent in the recent past, while the Denmark central bank
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and exposition, although I note later in section 4.4 how the end result of my framework
could readily be adjusted to allow for a non-zero lower bound.
An alternative, and I believe more intuitive, expression of the Black ZLB framework

is to explicitly decompose the Black short rate in equation 1 into its shadow short rate
component and a component that represents the option value of physical currency
contingent on the prevailing level of the shadow short rate. Speci�cally:

r
¯
B (t) = r (t) + max f� r (t) ; 0g (2)

With that decomposition, the Black yield curve at time t as a function of time-to-
maturity � may therefore be envisaged as a shadow yield curve R(t; �) generated from
the process for the shadow rate r(t) plus a �physical currency option e¤ect�ZB (t; �)
generated from the process for max f� r (t) ; 0g, i.e.:

R
¯
B (t; �) = R (t; �) + ZB (t; �) (3)

As I will formalize in the following sub-sections and section 3, ZB (t; �) re�ects the
cumulative value of a stream of European call options expiring between time t to time
t + � . Those options give the investor the right to invest in physical currency (at an
e¤ective nominal interest rate of zero) at any point in time, against the alternative of
being obliged to invest at the shadow short rate at all times, even if any realization
should happen to be negative.
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Figure 1: A stylized illustration of the Black yield curve decomposed into the shadow yield
curve and the physical currency option e¤ect.

Figure 1 stylistically illustrates the decomposition of a Black yield curve into its
shadow yield curve and option e¤ect components. The shadow short rate is the value

deposit rate has been negative since July 2012. The German bond market has experienced instances of
mildly negative interest rates even out to 2-year maturities, despite the positive policy rate setting by
the European Central Bank, which likely results from the perceived safety of German bonds relative
to other euro currency countries.
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of the interest rate function at a time to maturity � = 0, i.e. r(t) =R(t; 0), which
is �5 percent in the example of �gure 1. The associated option e¤ect at � = 0 is
ZB (t; 0) = max f� r (t) ; 0g = max f� [�5 percent] ; 0g = 5 percent, and the Black
short rate r

¯
B (t) = r(t) + max f� r (t) ; 0g = �5 percent + 5 percent = 0 percent.

2.2 Black bond prices

Black bond prices may be represented generically with the following standard arbitrage
pricing expression:10

P
¯
B (t; �) = ~Et

�
exp

�
�
Z �

0

r
¯
B (t+ u) du

�
� 1
�

(4)

where 1 is the standard terminal cash�ow for a bond (which I hereafter omit in similar
expressions), r

¯
B (t+ u) is the risk-adjusted di¤usion process for the Black short rate,

and ~Et is the risk-adjusted expectations operator based on information up to time t.
Equation 4 does not have closed-form analytic solution, as noted in section 1, but

it can always be evaluated using numerical methods. For my exposition, I assume that
Black bond prices are in principle obtained via a Monte Carlo simulation (hence the
subscript �M�), and hence they can be expressed as follows:11

P
¯
B
M (t; �) =

1

J

JX
j=1

P
¯
B
M,j (t; �) (5)

where P
¯
B
M,j (t; �) is a single simulated bond price:

P
¯
B
M,j (t; �) = exp

"
�

IX
i=0

r
¯
B
M,j (t+ i�t;�t)�t

#
(6)

J represents an arbitrarily large number of simulations, and:

r
¯
B
M,j (t+ i�t;�t) = max f0; rM,j (t+ i�t;�t)g (7)

with rM,j (t+ i�t;�t) a single simulated path of the discretized default-free shadow
short rate di¤usion process under the risk-adjusted measure. Regarding the discretiza-
tion, �t = �=I (with I arbitrarily large to ensure that �t is appropriately small),
and for clarity in what follows I have used the notation rM,j (t+ i�t;�t) to explicitly
denote that the short rate prevailing at time t+ i�t has a time to maturity of �t (i.e.
rM,j (t+ i�t;�t) prevails over the period from t+ i�t to t+ i�t+�t).

10See, for example Filipovíc (2009) p. 109. To faciliate the link with my later nota-
tion, I have adopted the Brace, Gatarek, and Musiela (1997) time and time-to-maturity nota-
tion for bond prices, as opposed to time and time-of-maturity notation. The latter would be

P
¯
B (t; t+ �) = ~Et

n
exp

�
�
R t+�
t

r
¯
(v) dv

�o
, the change of variables u = v � t produces P

¯
B (t; t+ �) =

~Et
�
exp

�
�
R �
0
r
¯
(t+ u) du

�	
, and I denote P

¯
B (t; t+ �) as P

¯
B (t; �).

11See, for example, James and Webber (2000) p. 349. Ueno, Baba, and Sakurai (2006) and Bauer
and Rudebusch (2013) are examples that use Monte Carlo simulations to implement the Black frame-
work.
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2.3 Black forward bond prices

Using a standard term structure relationship,12 Black forward bond prices P
¯
B (t; � ; �)

at time t, for settlement (or delivery) at time t + � , and with a remaining time to
maturity � at the time of settlement may be expressed as:

P
¯
B
M (t; � ; �) =

P
¯
B
M (t; � + �)

P
¯
B
M (t; �)

(8)

where P
¯
B
M (t; �) has already been de�ned in the previous section, and:

P
¯
B
M (t; � + �) =

1

J

JX
j=1

P
¯
B
M,j (t; � + �) (9)

with:

P
¯
B
M,j (t; � + �) = exp

"
�

IX
i=0

r
¯
B
M,j (t+ i�t;�t)�t

#
� exp [�max f0; rM,j (t+ � ; �)g �]

(10)
For use in the following section, I re-express the �nal term on the right-hand side

of equation 10 as:

exp [�max f�g �] = exp [�max f0; rM,j (t+ � ; �)g �]
= exp [min f0;� rM,j (t+ � ; �) �g]
= min fexp [0] ; exp [� rM,j (t+ � ; �) �]g
= min f1;PM,j (t+ � ; �)g
= PM,j (t+ � ; �) + min f1� PM,j (t+ � ; �) ; 0g
= PM,j (t+ � ; �)�max fPM,j (t+ � ; �)� 1; 0g (11)

and I use that result to express the Black forward bond price in equation 8 as:

P
¯
B
M (t; � ; �) = P¯

B
M,1 (t; � ; �)� P¯

B
M,2 (t; � ; �) (12)

where:

P
¯
B
M,1 (t; � ; �) =

1
J

PJ
j=1 exp

h
�
PI

i=0 r¯
B
M,j (t+ i�t)�t

i
� PM,j (t+ � ; �)

1
J

PJ
j=1 exp

h
�
PI

i=0 r¯
B
M,j (t+ i�t)�t

i (13)

P
¯
B
M,2 (t; � ; �) =

1
J

PJ
j=1 exp

h
�
PI

i=0 r¯
B
M,j (t+ i�t)�t

i
�max fPM,j (t+ � ; �)� 1; 0g

1
J

PJ
j=1 exp

h
�
PI

i=0 r¯
B
M,j (t+ i�t)�t

i
(14)

Having established this form for Black forward bond prices, I now proceed to ap-
proximate that expression in section 3.

12See, for example, Filipovíc (2009) p. 117.
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3 Approximating the Black framework

In this section, I precisely de�ne my proposed approximation to the Black forward
bond prices introduced in section 2.3, and then show how that approximation leads
to an analytic expression for discrete-period ZLB forward rates. Section 3.3 proceeds
to transform the discrete-period ZLB forward rate expressions into continuous-time
expressions and, in light of those expression, section 3.4 revisits the intuition for the
Black framework yield curve from 2.1.

3.1 Approximate Black forward bond prices

The approximation I make to the expression for Black forward bond prices is to discount
the future cash�ows PM,j (t+ � ; �) and max fPM,j (t+ � ; �)� 1; 0g with shadow short
rates instead of Black short rates. In notation, that means simply replacing the Black
shadow short rates r

¯
B
M,j (t+ i�t)�t in equations 13 and 14 with shadow short rates

rM,j (t+ i�t)�t. Equations 12, 13, and 14 therefore respectively become:

P
¯
C
M (t; � ; �) = P¯

C
M,1 (t; � ; �) + P¯

C
M,2 (t; � ; �) (15)

where:

P
¯
C
M,1 (t; � ; �) =

1
J

PJ
j=1 exp

h
�
PI

i=0 rM,j (t+ i�t)�t
i
� PM,j (t+ � ; �)

1
J

PJ
j=1 exp

h
�
PI

i=0 rM,j (t+ i�t)�t
i (16)

and:

P
¯
C
M,2 (t; � ; �) = �

1
J

PJ
j=1 exp

h
�
PI

i=0 rM,j (t+ i�t)�t
i
�max fPM,j (t+ � ; �)� 1; 0g

1
J

PJ
j=1 exp

h
�
PI

i=0 rM,j (t+ i�t)�t
i

(17)
I have used the notation P

¯
C
M (t; � ; �) to denote what I call the forward �currency-

adjusted bond�price or forward CAB price. At this stage, the name and notation is
simply to distinguish the quantity from the Black bond price P

¯
B (t; � ; �), but there is

an appealing intuition underlying the name as I discuss below in section 3.2.
In light of the de�nition above, there are three immediate observations that can be

made about the CAB framework in the context of ZLB yield curve modelling. First, the
CAB framework is distinctly di¤erent from the Black framework given the di¤erences in
how future contingent cash�ows are discounted in the two frameworks. Second and re-
lated, the CAB framework is clearly an approximate ZLB framework, unlike the Black
framework. Speci�cally, the Black framework is arbitrage free and theoretically self-
consistent because it uses own-model ZLB short rates for discounting future contingent
cash�ows, while the CAB framework does not. Third, the approximation of the CAB
framework to the Black framework is likely to be better for shorter times to maturity
and worse for longer times to maturity. The basis for that conjecture is that divergences
between the distribution of shadow short rates and ZLB short rates will increase by
horizon/time to maturity, which should therefore result in larger di¤erences between
the discount factors in the two respective frameworks. That phenomenon has already
been established empirically for two examples, i.e. for a one-factor CAB-GATSM in

9



Krippner (2013), and a restricted three-factor CAB-GATSM in Christensen and Rude-
busch (2013). Encouragingly, however, the reported di¤erences are small; respectively
13 basis points at the 30-year horizon, and 4 basis points at the 10-year horizon.

3.2 Re-expressing of CAB forward bond prices

When the shadow rate process admits closed form analytic solutions in continuous
time, which will be the case for generic GATSM speci�cations that I use in section
4 (and some other processes)13, then all of the individual summations underlying the
forward CAB price in equation 15 can be expressed more succinctly. At this stage, I
simply indicate that closed-form analytic solutions are available by returning to generic
arbitrage pricing expressions obtained in the limit of �t! 0. Hence, the denominators
of both P

¯
C
M,1 (t; � ; �) and P¯

C
M,2 (t; � ; �) is the shadow bond price P(t; �):

P (t; �) = lim
�t!0

(
1

J

JX
j=1

exp

"
�

IX
i=0

rM,j (t+ i�t)�t

#)

= ~Et
�
exp

�
�
Z �

0

r (t+ u) du
��

(18)

the numerator for P
¯
C
M,1 (t; � ; �) is the shadow bond price P(t; � + �):

P (t; � + �) = lim
�t!0

(
1

J

JX
j=1

exp

"
�

IX
i=0

rM,j (t+ i�t)�t

#
� PM,j (t+ � ; �)

)

= ~Et
�
exp

�
�
Z �+�

0

r (t+ u) du
��

(19)

and the numerator for P
¯
C
M,2 (t; � ; �) is the shadow bond option price C(t; � ; �):

C (t; � ; �) = lim
�t!0

(
1

J

JX
j=1

exp

"
�

IX
i=0

rM,j (t+ i�t)�t

#
�max fPM,j (t+ � ; �)� 1; 0g

)

= ~Et
�
exp

�
�
Z �+�

0

r (t+ u) du
��

�max fP (t+ � ; �)� 1; 0g (20)

at time t, for expiry at time t + � , and with a remaining time to maturity � on the
bond at the time of the option expiry.
The forward CAB price P

¯
C (t; � ; �) may therefore be expressed as:

P
¯
C (t; � ; �) =

P (t; � + �)
P (t; �)

� C (t; � ; �)
P (t; �)

= P (t; � ; �)� ZCP (t; � ; �) (21)

13For example, closed-form analytic solutions are available for Cox, Ingersoll, and Ross
(1985)/square-root models with independent factor innovations (although the expressions are rela-
tively complex; e.g. see Chen and Scott (1992) for the two-factor case). Therefore, the CAB frame-
work could be used for mixed Gaussian/square-root models subject to the ZLB. Closed-form analytic
solutions are also available for some jump di¤usion models, depending on how the jumps are de�ned;
see Piazzesi (2010) p. 709-17 for further discussion.
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where ZCP (t; � ; �) is the value of the option to hold physical currency in the CAB
framework.
The name forward �currency-adjusted bond�price highlights that the fundamental

building block for my ZLB framework is a forward shadow bond adjusted by a call
option that represents the availability of physical currency as an alternative investment.
Speci�cally, investors at time t + � have the choice of purchasing the shadow bond at
a price Pj (t+ � ; �) = exp [�rj (t+ �) �] if Pj (t+ � ; �) < 1 (hence locking in a return
of rj (t+ �) > 0 over the time step from t+ � to t+ � + �) or holding physical currency
with a price of 1 which will retain its price of 1 into the next period (hence locking in
a return rj (t+ �) = 0). The option of holding physical currency is equivalent to the
investor possessing an option to purchase the shadow bond at a price Pj (t+ � ; �) = 1,
given the known pay-o¤ of 1 at time t+ � + � and the original assumption from section
2.2 that shadow short rates are default-free and under the risk-adjusted measure (which
naturally translates to the associated single-step shadow bond).
Correspondingly, at time t, investors have the following marginal choices with re-

spect to time t + � : (1) arrange to have 1 physical currency unit become available at
time t + � by purchasing the CAB PC (t; �), which will mature with a pay-o¤ of 1 at
time t + � ; or (2) commit at time t to extending the investment in the CAB PC (t; �)
by purchasing PC (t; � + �) =PC (t; �) units of the forward CAB PC (t; � ; �), which e¤ec-
tively converts the CAB PC (t; �) into the CAB P(t; � + �). The �rst marginal choice
will provide the investor with the option to hold physical currency over the time step
from t + � to t + � + �, i.e. to invest at Pj (t+ � ; �) = 1 if Pj (t+ � ; �) > 1, thereby
avoiding a negative return. The second marginal choice forgoes the latter option, but
the appropriate amount of ZCP (t; � ; �) has already been embedded in the CAB price
PC (t; � + �) to compensate the investor,14 thereby making them indi¤erent to either
choice.
A useful and simple illustration of the intuition above is to set � = 0. In that

case, the forward CAB price obviously embeds the value of the option to hold physical
currency, because:

P
¯
C (t; 0; �) = P

¯
C (t; �)

= min f1;P (t; �)g
= P (t; �) + min f1� P (t; �) ; 0g
= P (t; �)�max fP (t; �)� 1; 0g
= P (t; �)� C (t; 0; �) (22)

where C(t; 0; �) is the known pay-o¤ from an expiring call option on the shadow bond
P(t; �).

3.3 Continuous-time CAB term structure model

While the �nite-step securities in sections 2.1 and 2.2 could be used directly to establish
a discrete-time term structure model, it is often more convenient to work with term

14The amount ZCP (t; � ; �) is appropriate in the context my approximate ZLB framework, but the
Black framework compensation will be di¤erent, as I discuss in section 3.3. Also note that the
borrower�s perspective is simply the direct counterpart to the investor�s perspective that I have used
for the discussion.
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structure models in continuous time. Furthermore, using forward rates is particularly
convenient in the Gaussian context, as we will see in sections 4 and 5. Also, from this
point onward, I omit the superscript �C�for CAB quantities, and so quantities with
an underscore represent values constrained by the ZLB within the CAB framework. (I
continue to use the superscript �B�for Black framework quantities.)
CAB forward rates f

¯
(t; � ; �) at time t and over the discrete time-to-maturity step

from � to � + � are given by the following standard relationship:15

f
¯
(t; � ; �) = �1

�
log [P

¯
(t; � ; �)] (23)

and those discrete-period forward rates can be converted into instantaneous forward
rates f

¯
(t; �), at time t and as a function of horizon/time to maturity � , by the following

standard relationship:

f
¯
(t; �) = lim

�!0
ff
¯
(t; � ; �)g

= lim
�!0

fP (t; � ; �)� ZP (t; � ; �)g (24)

Equation 24 can be simpli�ed. Appendix A.1 contains the details of that derivation,
and the �nal result is:

f
¯
(t; �) = f (t; �) + z (t; �) (25)

where f(t; �) is the instantaneous shadow forward rate curve, and z(t; �) is the instan-
taneous CAB option e¤ect for the forward rate. At this stage, I express that result in
its implicit form, i.e.:

z (t; �) = lim
�!0

�
d
d�

�
C (t; � ; �)
P (t; �)

��
(26)

but that implicit form will generate explicit closed-form analytic expressions whenever
such expressions are available for bond prices P(t; �) and option prices C(t; � ; �).
Having de�ned the CAB forward rate f

¯
(t; �), the CAB interest rate R

¯
(t; �) is readily

de�ned using the standard continuous-time term structure relationships, i.e.:

R
¯
(t; �) =

1

�

Z �

0

f
¯
(t; u) du

=
1

�

Z �

0

f (t; u) du+
1

�

Z �

0

z (t; u) du

= R (t; �) + Z (t; �) (27)

where u is a dummy integration variable for horizon/time to maturity, R(t; �) is the
shadow interest rate function, and Z(t; �) is the CAB option e¤ect for interest rates.
Similarly, P

¯
(t; �) may be expressed as the product of the shadow bond price P(t; �)

and an option e¤ect for ZP (t; �), i.e.:

P
¯
(t; �) = exp

�
�
Z �

0

f
¯
(t; u) du

�
= exp [�� � R

¯
(t; �)]

= exp [�� � R (t; �)] � exp [�� � Z (t; �)]
= P (t; �) � ZP (t; �) (28)

15References for any standard term structure relationships I use in this section and subsequently in
the article are, for example, Filipovíc (2009) p. 7 or James and Webber (2000) chapter 3.
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where:
ZP (t; �) = exp [�� � Z (t; �)] (29)

The instantaneous CAB short rate r
¯
(t) associated with any continuous-time dy-

namic process for the shadow short rate r(t) is a well-de�ned and non-negative quantity.
Appendix A.2 contains the details, which I summarize as follows:

r
¯
(t) = lim

�!0
f
¯
(t; �)

= f (t; 0) + z (t; 0)

= r (t) + max f�r (t) ; 0g
= max fr (t) ; 0g (30)

3.4 The Black yield curve decomposition

Having derived the shadow yield curve and option e¤ects for the CAB framework, I
now brie�y return to formalize the intuition of the Black framework from section 2.1.
Using the currency-adjustment intuition developed above for the CAB framework, the
Black yield curve may be decomposed into the shadow yield curve and an option e¤ect
for interest rates as follows:

R
¯
B (t; �) =

1

�

Z �

0

f
¯
B (t; u) du

=
1

�

Z �

0

f (t; u) du+
1

�

Z �

0

zB (t; u) du

= R (t; �) + ZB (t; �) (31)

Unlike the CAB framework, the Black interest rate expression R
¯
B (t; �) is theoreti-

cally self-consistent, for the reasons previously discussed in section 3.1. Of course, the
relative disadvantage is that ZB (t; �) cannot be obtained using closed-form analytic
solutions that may be available for some speci�cations of the shadow term structure,
such as the GATSM speci�cation to which I now turn.

4 The CAB-GATSM framework

In this section, I develop the generic CAB-GATSM framework using the continuous-
time CAB framework established in section 3.3 and a generic GATSM speci�cation to
represent the shadow term structure. Section 4.1 outlines the GATSM speci�cation,
and sections 4.2 and 4.3 respectively derive the shadow-GATSM forward rate and the
CAB-GATSM option e¤ect that together provide the closed-form analytic expression
for CAB-GATSM forward rates.

4.1 Shadow-GATSM short rate process

I adopt the generic GATSM speci�cation from Dai and Singleton (2002) pp. 437-38 as a
convenient point of reference, for the compactness of its matrix notation and because it
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already contains explicit bond price solutions for most GATSM speci�cations. Hence,
the generic shadow-GATSM short rate process is:

r (t) = a0 + b00 x (t) (32)

where a0 is a constant, b0 is a constant N � 1 vector containing the weights for the
N state variables xn (t), and x (t) is an N � 1 vector containing the N state variables
xn (t). Under the physical or P measure, x (t) evolves as the following correlated vector
Ornstein-Uhlenbeck process:

dx (t) = � [� � x (t)] dt+ �dW (t) (33)

where � is a constantN�1 vector representing the long-run level of x (t), � is a constant
N�N matrix that governs the deterministic mean reversion of x (t) to �, � is a constant
N � N matrix representing the potentially correlated volatilities of x (t), and dW (t)
is an N � 1 vector with independent Wiener components dWn (t) � N (0; 1)

p
dt.

The market prices of risk are linear with respect to the state variables, i.e.:16

�(t) = ��1 [
 + �x (t)] (34)

where 
 and � are respectively a constant N � 1 vector and constant N �N matrix.
The risk-adjusted process for x (t) is:

dx (t) = ~�
h
~� � x (t)

i
dt+ �dW (t) (35)

where ~� = �+ � and ~� = ~��1 (�� � 
).

4.2 Shadow-GATSM forward rates

I derive the shadow-GATSM forward rate expression f(t; �) by solving for GATSM
bond prices and then applying the standard term structure expression relating bond
prices to forward rates. The details are contained in appendix B, but to summarize,
the shadow-GATSM bond prices P(t; �) I obtain have the standard exponential a¢ ne
form, i.e.:

P (t; �) = exp
�
�A (�)�B (�)0 x (t)

�
(36)

where:
B (�) = [÷(b0; ~�; �)]

0 x (t) (37)

and [÷(b0; ~�; �)] is the following N � 1 vector function of forward rate loadings:
[÷(b0; ~�; �)] = b00 exp (�~��) (38)

For the purposes of the exposition here, A (�) is most conveniently de�ned via its
derivative, i.e.:17

d
d�
A (�) = a0 +

Z �

0

[÷(b0; ~�; v � s)]0 �0
�Z �

s

� [÷(b0; ~�; u� s)] du
�
ds (39)

16This is the �essentially a¢ ne�speci�cation from Du¤ee (2002), but for a model with full Gaussian
dynamics. Also see Cheridito, Filipovíc, and Kimmel (2007) for further discussion on market price of
risk speci�cations.
17Dai and Singleton (2002) provides an expression for A (�) that applies in the case of distinct

eigenvalues for ~�, but my result is generalized to allow for any GATSM. In particular, it accommodates
shadow-GATSM speci�cations with repeated eigenvalues for ~� which is one of the models that I later
derive and estimate in section 5.
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In appendix B.2, I apply the following standard term structure expression to equa-
tion 36 to obtain the given expression for forward rates:

f (t; �) = � d
d�
log [P (t; �)]

= A (�) +B (�)0 x (t)

= a0 + [÷(b0; ~�; �)]
0 x (t)

+

Z �

0

[÷(b0; ~�; � � s)]0 �0
�Z �

s

� [÷(b0; ~�; u� s)] du
�
ds (40)

From here on, I use an intuitive interpretation of equation 40 as a volatility e¤ect
and the expected path of the short rate, as at time t, under the risk-adjusted measure.
That is:

f (t; �) = ~Et [r (t+ �)] +VE (�) (41)

where:
~Et [r (t+ �)] = a0 + [÷(b0; ~�; �)]0 x (t) (42)

and the volatility e¤ect is VE(�) =
R �
0
[÷(b0; ~�; � � s)]0 �0

�R �
s
� [÷(b0; ~�; u� s)] du

�
ds.18

Note that the functional expression for ~Et [r (t+ �)] by horizon/time to maturity
� could be used to obtain the expected time to a given value of the shadow short
rate conditional on the current state variable vector and the model speci�cation. For
example, if the current value of the shadow short rate r(t) = a0 + b00 x (t) is negative,
then the expected time to the �lift-o¤� value of zero could be obtained by setting
~Et [r (t+ �)] to zero and solving for � 0, i.e.:

0 = a0 + [÷(b0; ~�; � 0)]
0 x (t) (43)

4.3 CAB-GATSM option e¤ect

The CAB-GATSM option e¤ect z(t; �) may be derived using the limit expression for
the option e¤ect from equation 26 and closed-form analytic expressions for the prices of
bonds and call options for GATSMs, as I show that explicitly in appendix C. However,
it turns out that using GATSMs to represent the shadow term structure allows a much
more direct derivation.19 The details are contained in appendix D, but I summarize
them here as follows.
First I establish that, under the risk-adjusted t+� forward measure, the distribution

of risk-adjusted shadow-GATSM short rates for the generic shadow-GATSM has the
following normal distribution:

r (t+ �) � N
�
f (t; �) ; [! (�)]2

	
(44)

18I refer to VE(�) as the volatility e¤ect because it captures the in�uence that volatility in the
shadow short rate has on expected returns due to Jensen�s inequality. That is, the expected com-
pounded return from investing in a volatile short rate over time t to t+ � is less than the compounded
return from investing in the expected short rate over the same period.
19I am indebted to Scott Richard for pointing out that my original result in appendix C may be

obtained as the expected value of a normal distribution truncated at zero, which led me to the forward
measure derivation. I have chosen to value the option e¤ect z(t; �) here, which aligns with my original
exposition, but f

¯
(t; �) could be calculated directly as in equation 50 with rL = 0. Also note that

there is no need to explicitly calculate GATSM bond option expressions to evaluate the option e¤ect
expression for any CAB-GATSM, as suggested by Christensen and Rudebusch (2013) p. 9; one should
just use the GATSM volatility and forward rate expressions directly.
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where:

[! (�)]2 = var [r (t+ �)]

= b00 cov [x (t+ �)] b0

= b00

�Z �

0

[exp (�~�s)]0 �0� [exp (�~�s)] ds
�
b0

=

Z �

0

[÷(b0; ~�; s)]
0 �0� [÷(b0; ~�; s)] ds (45)

The CAB-GATSM option e¤ect is then the expected value of max f� r (t+ �) ; 0g
under the same risk-adjusted t+ � forward measure, i.e.:

z (t; �) = ~Et+� [max f� r (t+ �) ; 0g]

=

Z 1

�1
max f� r (t+ �) ; 0g � Prob [r (t+ �)] d r (t+ �)

=

Z 0

�1
� r (t+ �) � Prob [r (t+ �)] d r (t+ �) (46)

where the integral from 0 to 1 is set to zero because max f� r (t+ �) ; 0g = 0 over
that domain.
Given the normal distribution in equation 44, the probability density function for

r(t+ �) is:

Prob [r (t+ �)] =
1

! (�)
� 1p
2�
exp

 
�1
2

�
r (t+ �)� f (t; �)

! (�)

�2!
(47)

and so f
¯
(t; �) may be evaluated directly as:

z (t; �) =

Z 1

0

� r (t+ �) � 1

! (�)
� 1p
2�
exp

 
�1
2

�
r (t+ �)� f (t; �)

! (�)

�2!
d [r (t+ �)]

= �f (t; �)
�
1� �

�
f (t; �)
! (�)

��
+ ! (�) � 1p

2�
exp

 
�1
2

�
f (t; �)
! (�)

�2!
(48)

where � [�] is the cumulative normal distribution function.

4.4 CAB-GATSM forward rates

Substituting the result for z(t; �) from equation 94 into equation 25 gives the generic
CAB-GATSM forward rate expression:

f
¯
(t; �) = f (t; �) + z (t; �)

= f (t; �)� f (t; �)
�
1� �

�
f (t; �)
! (�)

��
+ ! (�) � 1p

2�
exp

 
�1
2

�
f (t; �)
! (�)

�2!

= f (t; �) � �
�
f (t; �)
! (�)

�
+ ! (�) � 1p

2�
exp

 
�1
2

�
f (t; �)
! (�)

�2!
(49)
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where explicit generic expressions are given for f(t; �) and ! (�) respectively in equations
40 and 45.
Two observations immediately follow from the result above. First, CAB-GATSM

short rates are Markovian; i.e. they have no �memory�or path dependency, because
the distribution of shadow short rates is only conditional on the initial state and the
horizon/time to maturity. Conversely, Black-GATSM short rates are non-Markovian.20

The second observation is that incorporating a non-zero lower bound rL into the CAB-
GATSM framework becomes very straightforward, i.e.:

f
¯
(t; �) =

Z 1

rL

r (t+ �) � Prob [r (t+ �)] d r (t+ �) (50)

ZLB-GATSM interest rates R
¯
(t; �) and bond prices P

¯
(t; �) may be obtained using

the results for f
¯
(t; �) within the respective expressions provided in equations 27 and 28.

For example, I use the interest rate expression as the basis for my empirical estimations
in section 5.

4.5 Observations on the CAB-GATSM framework

One advantage of developing the CAB-GATSM framework based on a generic GATSM
speci�cation for the shadow term structure is that the associated observations will apply
to any particular CAB-GATSM speci�cation, irrespective of the number of factors and
factor inter-relationships. Bearing that generality in mind, I make the �ve observation
about the CAB-GATSM framework.
First, the CAB-GATSM framework obviously preserves the complete �exibility of

the GATSM class of models by using the GATSM as its foundation. The CAB-GATSM
framework provides the explicit modi�cation z(t; �) to ensure that the ZLB is respected
by the entire CAB-GATSM forward rate curve at each point in time, no matter how
much shadow-GATSM forward rates evolve below zero. Speci�cally, as f(t; �) decreases
to larger negative values, � [f (t; �) =! (�)] and exp

�
�1
2
[f (t; �) =! (�)]2

�
both approach

zero, so limf(t;�)=!(�)!�1f¯
(t; �) = 0.

The second observation is that the CAB-GATSM forward rate curve will always be a
simple closed-form analytic expression. That is evident from the generic CAB-GATSM
being itself composed of simple closed-form analytic expressions, i.e.: (1) f(t; �), which
is de�ned by the state variable vector x (t) and scalar exponential functions of time to
maturity � ; (2) ! (�), which is de�ned by state variable innovation variances and covari-
ances and scalar exponential functions of � ; (3) the standard cumulative normal func-
tion � [f (t; �) =! (�)]; and (4) the scalar exponential function exp

�
�1
2
[f (t; �) =! (�)]2

�
.

Third, CAB-GATSM interest rates R
¯
(t; �) for any given time to maturity � must be

obtained via numerical integration, a property that arises from the Gaussian context.21

However, the number of numerical evaluations required for such integrals remains in-
variant to the speci�cation of the CAB-GATSM because f

¯
(t; �) is always a closed-form

20As a corollary, the Heath, Jarrow, and Morton (1992) framework and methods introduced for that
literature may o¤er convenient and e¢ cient methods of applying the Black framework, which would
be an interesting topic to follow up in future research.
21I have tried, obviously without success, to derive closed-form analytic expressions for r

¯
(t; �),

and hence P
¯
(t; �). The relatively simple form of f

¯
(t; �) tantalizingly suggests the possibility of an

analytic integral, but integration by parts was unsuccessful as was �brute force�analytic integration
via Mathematica.
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analytic expression; i.e. the evaluation of R
¯
(t; �) is always an elementary univariate

numerical integral of f
¯
(t; �) only with respect to � . If CAB-GATSM bond prices P

¯
(t; �)

are required, they will be the scalar exponential of the same (negated) univariate nu-
merical integral.
Fourth, the very tractable evaluation of CAB-GATSM interest rates (or bond

prices) along with multivariate-normal transition densities for the CAB-GATSM state
variables means that CAB-GATSMs will retain a large degree of the GATSM-class
tractability for empirical applications and estimations.
Fifth and �nally, note that CAB-GATSM forward rates converge to GATSM for-

ward rates when the latter are su¢ ciently positive relative to term structure volatility.
Speci�cally, as the ratio f(t; �) =! (�) increases to larger positive values, � [f (t; �) =! (�)]
approaches one and exp

�
�1
2
[f (t; �) =! (�)]2

�
approaches zero, so limf(t;�)=!(�)!1f¯

(t; �) =
f(t; �). That convergence of forward rates means that CAB-GATSM interest rates and
bond prices will similarly converge to their shadow counterparts when the ZLB con-
straint becomes immaterial.

5 Estimating the CAB-GATSM framework

In this section, I use the iterated extended Kalman �lter (hereafter IEKF) to estimate
a variety of CAB-GATSMs with di¤erent sets of United States yield curve data.
Section 5.1 �rst introduces the state space representation common to all CAB-GATSM
speci�cations. Sections 5.2, 5.3, and 5.4 then respectively specify three di¤erent CAB-
GATSMs and present the results from their estimation. In section 5.5, I summarize
the key results and make some general observations.

5.1 CAB-GATSM state space representation

The state equation for the CAB-GATSM is the state equation for the GATSM used
to represent the shadow term structure, which may in turn be obtained from the
conditional expectation of x (t+ �) under the physical measure, i.e. Et fx (t+ �) jx (t)g,
with discrete time steps �t for � . The result is standard in the literature, e.g. see
Babbs and Nowman (1998), but I also provide a derivation in appendix E.2.2. Hence,
the state equation for any CAB-GATSM is always a �rst-order vector autoregression
for the state variables, i.e.:

xt+1 = [I � F ] � + Fxt + "t+1 (51)

where xt is the N � 1 vector of state variables (with t as a subscript being an integer
index from 1 to T representing the discrete time intervals �t at which data is observed
over the sample period), F = exp (���t) is a constant N � N matrix, [I � F ] � is a
constant N � 1 vector, and "t is an N � 1 vector of innovations with a constant N �N
covariance matrix 
".
The measurement equation for the CAB-GATSM is:264 R

¯ t
(� 1)
...

R
¯ t
(�K)

375 =
264 R
¯
(xt;A; � 1)
...

R
¯
(xt;A; �K)

375+
264 �t (� 1)

...
�t (�K)

375 (52)
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where R
¯ t
(� k) is the interest rate observed at t for time-to-maturity � k; R¯

(xt;A; � k) is
the CAB-GATSM interest rate as a function of the state variables xt, the parameter
set A for the given model, and the time-to-maturity � k; and �t (� k) is the component
of R
¯ t
(� k) that is unexplained by R¯

(xt;A; � k).
CAB-GATSM interest rates for a given time to maturity � k are obtained by univari-

ate numerical integration of the CAB-GATSM forward rates f
¯
(xt;A; i��). A standard

form of numerical integration that I have outlined in appendix E.2.3 conveniently sim-
pli�es to an arithmetic mean, i.e.:

R
¯
(xt;A; � k) = mean ff¯ (xt;A;��) ; f¯ (xt;A; 2��) ; : : : ; f¯ (xt;A; Ik��)g (53)

where Ik = � k=�� , and f¯
(xt;A;��), f¯

(xt;A; 2��), : : :, f¯
(xt;A; Ik��) is a sequence of

forward rates f
¯
(xt;A; u) for times to maturity u = i�� .22 That sequence is calculated

from equation 49 using the sequences of shadow forward rates f(xt;A; u) and annual-
ized option volatilities ! (A; u) for the given CAB-GATSM speci�cation. Nevertheless,
for any CAB-GATSM, the measurement equation may always be represented more
generally and compactly in vector form, i.e.:

R
¯ t
= R
¯
(xt;A) + �t (54)

where R
¯ t
is theK�1 vector representing the observed yield curve at t (i.e. theK inter-

est rates of di¤erent times to maturity used to represent the yield curve at t), R
¯
(xt;A) is

the K�1 vector of CAB-GATSM interest rates R
¯
(xt;A; � k), and �t is the K�1 vector

of unexplained yield curve components. I assume the K �K covariance matrix for the
measurement equation is constant with the form 
� = diag

�
�2� (� 1) ; : : : ; �

2
� (�K)

�
. That

assumption is standard in the literature, and I also adopt the standard assumptions of
zero intertemporal covariances and zero covariances between �t and "t.
The key aspect to note about the measurement equation is that, unlike GATSMs,

it involves non-linear functions of the state variables xt. Therefore, estimating the
state space representation requires a non-linear technique. I use the iterated extended
Kalman �lter (hereafter IEKF) for my estimations after �nding that estimations using
the extended Kalman �lter (EKF) were not robust, which I discuss in section 5.3. The
IEKF is covered in textbooks such as Simon (2006) p. 410-12 and Grewal and Andrews
(2008) p. 312-13, and appendix E contains the details of the IEKF as relevant to my
application. As noted in appendix E.1, I using the Nelder-Mead algorithm to obtain
the parameter set A and state variables xt that maximize the log-likelihood function.
Due to space constraints, I usually present only the shadow short rate results for each
estimation; the full set of results for each estimation are available from the author on
request, as as the results from estimations I mention but don�t present.

5.2 CAB-GATSM(2)

In this section I develop the two-factor CAB-GATSM, or CAB-GATSM(2), by using
the GATSM(2) to represent the shadow term structure within the CAB-GATSM frame-
work. The maximally identi�able GATSM(2) has 12 free parameters, and I choose the
following parameters to de�ne the model: a0 (one parameter), ~� =diag[~�1; ~�2] (two

22I set �� to 0.01 years, and found no apparent sensitivity in the results by using values of 0.1 or
0.001 years. I also found no sensitivity to the alternative numerical integration methods I tested.
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parameters), � (four parameters, because � = ~� � �, so � contributes four free para-
meters), � (two parameters), and � de�ned with the three parameters �1, �2, and �12,
i.e.:

�0 =

�
�1 0

�12�2 �2
p
1� �212

�
(55)

Regarding the remaining parameters, I set ~� = 0, the non-diagonal elements of ~� to
zero, and b0 = [1; 1]0. Appendix F details the derivation of the shadow-GATSM(2)
forward rate expression, with the �nal result:

f (xt;A; u) = a0 + x1;t � exp (�~�1u) + x2;t � exp (�~�2u)

��21 �
1

2
[G (~�1; u)]

2 � �22 �
1

2
[G (~�2; u)]

2

���1�2 �G (~�1; u) �G (~�2; u) (56)

where:
G (�; u) =

1

�
[1� exp (���)] (57)

Note that G (�; u) is a function that occurs extensively in GATSMs, and I use it
hereafter where possible to keep expressions manageable.
To brie�y provide some intuition of the shadow-GATSM(2) forward rate speci�ca-

tion, note that the shadow short rate (hereafter SSR) at time t is de�ned as:

rt = a0 + b
0
0xt

= a0 + x1;t + x2;t (58)

and the �rst line of equation 56 represents the expected path of the SSR as a function
of horizon/time to maturity � , i.e.:

~Et [r (t+ �)] = a0 + x1;t � exp (�~�1�) + x2;t � exp (�~�2�) (59)

where a0 is the long-run (in�nite-horizon) level of the shadow short rate, the state
variable x1;t represents a latent component that captures more-persistent expected
deviations of the SSR from a0, and the state variable x2;t captures less-persistent (i.e.
faster mean-reverting) expected deviations of the SSR from a0. The remainder of
equation 56 is the time-invariant volatility e¤ect VE(�).
Appendix F details the derivation of annualized option volatility for the CAB-

GATSM(2), with the �nal result:

! (A; u) =
q
�21 �G (2~�1; u) + �22 �G (2~�2; u) + 2��1�2 �G (~�1 + ~�2; u) (60)

Using these results in conjunction with the state space representation already given
in section 5.1 completes the CAB-GATSM(2) speci�cation. My �rst empirical appli-
cation of the CAB-GATSM(2) is to the data described in Ichiue and Ueno (2013), i.e.
month-end federal funds rates and 1, 2, 5, and 10-year rates from the Gurkaynak, Sack,
and Wright (2007, hereafter GSW) data set for the period from January 1990 to March
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2013.23 I estimate the CAB-GATSM(2) with what I denote the IEKF(1e-8), which is
the IEKF iterated until all elements of

��x+t;i+1 � xt;i+1�� are less than 1e-8, and obtain
the estimated SSR series plotted in �gure 2.24 The correspondence with estimated
Black-GATSM(2) SSRs from Ichiue and Ueno (2013) is close.25
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Figure 2: CAB-GATSM(2) shadow short rates estimated with the data set described in
Ichuie and Ueno (2013), and Black-GATSM(2) shadow short rate estimates from Ichuie and

Ueno (2013).

I also estimate the CAB-GATSM(2) with two alternative data sets over the same
sample period, i.e.: (1) month-end 3- and 6-month Treasury bill rates and the 1, 2, 3, 4,
5, 7, and 10-year GSW rates, which I hereafter refer to as the GSW10 data set; and (2)
the GSW10 data set with the addition of 20 and 30-year GSW rates, which I hereafter
refer to as the GSW30 data set.26 Using these two data sets allows a comparison of
results obtained with di¤erent maturity spans, and estimations with the GSW30 data
set illustrate that the CAB-GATSM framework may readily be applied to data with
long maturity spans.

23The GSW data set is maintained by the Federal Reserve Board and is available at
http://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html. I also allow for the constant
14 basis point lower bound imposed by Ichiue and Ueno (2013) from November 2009, although I found
that it made little di¤erence compared to results using a ZLB. I have converted the federal funds rates
from the 360-day basis to a continuously compounding basis to match the basis of the GSW data,
using a time to maturity of 1/365 years.
24The value 1e-8 is 1/10000th of a basis point, so my choice of tolerance may be overly conservative

and it could likely be relaxed in future empirical applications. However, for the purposes of the present
article, I wanted to ensure that the state variables estimates had unambiguously converged at each
point in time, and therefore were not propagating any material imprecision into subsequent state
variable estimates.
25I thank Yoichi Ueno for making the results available to me.
26I have converted the Treasury bill rates from the 360-day discount basis to a continuously com-

pounding basis to match the basis of the GSW data, using times to maturity of 0.25 and 0.5 years.
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Figure 3: CAB-GATSM(2) shadow short rates estimated using the GSW10 and the GSW30
data sets and the IEKF(1e-8).

The results are plotted in �gure 3 along with the shortest-maturity interest rate
from both data sets (i.e. the 0.25-year rate). One immediate observation is that the
estimated SSRs from the GSW10 and GSW30 data sets are distinctly di¤erent after
late-2008 when interest rates became materially constrained by the ZLB. The SSR
results obtained from the GSW10 data set also di¤er, albeit less substantially, from
those obtained with the Ichiue and Ueno (2013) data set as plotted in �gure 2.

5.3 Restricted CAB-GATSM(2)

The CAB-GATSM(2) can be made more parsimonious by setting the mean-reversion
rate for the persistent component to zero, i.e. ~�1 = 0 in ~� =diag[~�1; ~�2]. The process for
x1;t therefore becomes a random walk, and so the parameter a0 may also be restricted
to zero. The intuition for the latter restriction is that setting ~�1 = 0 converts x1;t into
a pure Level state variable that represents the expected value, as at time t, of the long-
run (in�nite-maturity) short rate. Hence, a0 is no longer required in the Et [r (t+ �)]
component of the shadow-GATSM(2) forward rate equation.27

Appendix G shows that the ~�1 = 0 restriction is readily imposed by applying
the operator lim~�1!0 to the relevant components of equations 56 and 60. I have also
imposed a0 = 0 as noted, and I set ~�2 = � for notational convenience. The �nal
result is that the shadow-GATSM(2) forward rate expression becomes the two-factor
arbitrage-free Nelson and Siegel (1987) model, or hereafter AFNSM(2), in its forward
rate form, i.e.:

f (xt;A; u) = x1;t + x2;t � exp (��u)

��21 � � 2 � �22 �
1

2
[G (�; u)]2 � ��1�2 � � �G (�; u) (61)

27Speci�cally, lim�!1 Et [r (t+ �)] = a0 for the shadow-GATSM(2) and lim�!1 Et [r (t+ �)] =
x1 (t) for the restricted shadow-GATSM(2).
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where 1 and exp (��u) are the Nelson and Siegel (1987) Level and Slope forward rate
components. (In the following section I introduce the third [Bow] Nelson and Siegel
(1987) component.) The annualized option volatility becomes:

! (A; u) =
q
�21 � u+ �22 �G (2�; u) + 2��1�2 �G (�; u) (62)

Using these results in conjunction with the state space representation already given
in section 5.1 completes what I will hereafter call the CAB-AFNSM(2). I estimate
the CAB-AFNSM(2) using the longest span of GSW30 data available, which is from
November 1985 (the �rst observation in the GSW data set) to July 2013 (the last
month-end data point available at the time of writing), and the GSW10 data over that
same sample period.
Figure 4 plots the SSRs estimated using the GSW10 data set with the IEKF(1e-8)

introduced earlier, the EKF, and the IEKF(1). The results clearly show that estimates
obtained with the EKF and the IEKF(1) can be very misleading compared to those
obtained with the IEKF(1e-8); in this case the SSR estimates remain only mildly neg-
ative while the IEKF(1e-8) SSR estimates adopt larger negative values. The IEKF(2)
produced results closer to the IEKF(1e-8), but still with some material di¤erences.28

Indeed, the IEKF(1e-8) required up to 10 iterations to obtain the given tolerance
in periods with negative SSRs, compared to only several iterations in periods that
produced positive shadow short rates. Estimations of the CAB-AFNSM(2) with the
GSW30 data set showed similar divergences by estimation method to those presented
in �gure 4, and estimations of the CAB-GATSM(2) in section 5.2 and the restricted
three-factor CAB-GATSM in section 5.4 also showed very material divergences by
estimation method.
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Figure 4: CAB-AFNSM(2) shadow short rates estimated from the GSW10 data set using
the EKF, the IEKF with one additional iteration relative to the EKF, or the IEKF iterated

until all elements of
��x+t;i+1 � xt;i+1�� are less than 1e-8.

28Statistically, the log-likelihood value for the IEKF(1e-8) estimate is 15052.3, while the EKF and
IEKF(1) to IEKF(3) log-likelihood values are respectively lower by 257.3, 123.1, 20.2, and 2.0.
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To provide some intuition for the variability of CAB-GATSM results by the method
of estimation, �gure 5 plots the SSR and the Level and Slope state variables for the
GSW30 IEKF(1e-8) estimation (but the IEKF(1e-8) results from any model or data set
could have been used). First, note that the Slope state variable varies by more than the
Level state variable, and so makes the largest contribution to variation in the SSR.29

Second, because the non-linearity of the measurement equation will also be dominated
by the Slope state variable, the non-linearity may e¤ectively be viewed as a function of
the estimated SSR. Third, the magnitudes of negative SSR estimates relate directly to
how much the ZLB is constraining the yield curve data (i.e. a negative SSR essentially
measures the di¤erence between the ZLB [the lowest actual short rate in practice] and
where the short rate would otherwise be in the absence of physical currency).
Bearing these ideas in mind, the non-linearity of the measurement equation should

be small when the SSR is positive (i.e. conventional monetary policy periods, when
all interest rates on the yield curve are materially positive), and more signi�cant as
the SSR becomes negative (i.e. unconventional monetary policy periods, when short-
and mid-maturity interest rates are materially constrained by the ZLB). The EKF and
lower-iteration IEKF estimations will only be suitable for mildly non-linear systems,30

and so their performance will become relatively worse in unconventional monetary
policy periods. Conversely, the IEKF(1e-8) estimations should be more robust to
higher degrees of non-linearity.31
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29The relatively low variability of the Level state variable accords with its interpretation as the
long-horizon expectation of the SSR/actual short rate. As a related aside, from a macro-�nance
perspective, the long-horizon expected SSR/actual short rate should in principle be related to relatively
slow-moving fundamental macroeconomic variables, such as long-run potential growth and expected
in�ation. Diebold, Rudebusch, and Aruoba (2006) o¤er empirical support for the latter relationship.
30See, for example, Grewal and Andrews (2008) section 7.2 and Durbin and Koopman (2012) ch.

7 for further discussion on non-linear �ltering in general, and James and Webber (2000) p. 527 for a
comment on non-linear term structure models.
31It would also be useful to apply other non-linear methods in future work, such as the unscented

Kalman �lter and the particle �lter, to assess if the IEKF subject to a minimum tolerance is generally
robust enough for routine CAB-GATSM estimations.
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Figure 5: CAB-AFNSM(2) Level and Slope state variables, and shadow short rates
estimated using the GSW30 data set and the IEKF(1e-8).

5.4 Restricted CAB-GATSM(3)

In this section I develop a restricted three-factor CAB-GATSM. The maximally iden-
ti�able GATSM(3) has 22 free parameters, and I follow Christensen, Diebold, and
Rudebusch (2011) to impose the three additional restrictions that replicate the three-
factor AFNSM, or CAB-AFNSM(3). Speci�cally, relative to maximally identi�able
three-factor CAB-GATSM, I set a0 = 0 and de�ne the mean-reversion matrix ~� with
a single parameter �, i.e.:

~� =

24 0 0 0
0 � ��
0 0 �

35 (63)

rather than ~� =diag[~�1; ~�2; ~�3]. Therefore, the eigenvalues of ~� are ~�1 = 0 and a
repeated eigenvalue of �.
The remaining free parameters are � (nine parameters, because � contributes nine

free parameters), � (three parameters), and � is de�ned with the six parameters �1,
�2, �3, �12, �13, and �23, i.e.:

�0 =

2664
�1 0 0

�2�12 �2
p
1� �212 0

�3�13 �3
�23��12�13p

1��212
�3

q
1� �213 �

(�23��12�13)2
1��212

3775 (64)

Regarding the remaining parameters, I follow Christensen, Diebold, and Rudebusch
(2011) in setting ~� = 0, and b0 = [1; 1; 0]0. Appendix H details the derivation of the
shadow-AFNSM(3) forward rate equation, with the �nal result:

f (xt;A; u) = x1;t + x2;t � exp (��u)� x3;t � �u exp (��u)

��21 �
1

2
u2 � �22 �

1

2
[G (�; u)]2 � ��1�2 � uG (�; u)

��23 �
1

2
[F (�; u)]2 + �13�1�3 � uF (�; u)

+�23�2�3 �G (�; u)F (�; u) (65)

where:
F (�; �) = G (�; �)� � exp (���) (66)

This is the AFNSM(3) in its forward rate form, where 1, exp (��u), and �� exp (���)
are respectively the Nelson and Siegel (1987) Level, Slope, Bow forward rate compo-
nents.
The CAB-AFNSM(3) annualized option volatility is derived in appendix H as:

[! (A; u)]2 = �21 � � + �22 �G (2�; u) + 2�12�1�2G (�; u)

+�23 �
1

2

�
F (2�; u)� �� 2 exp (�2�u)

�
�2�13�1�3F (�; u)� �23�2�3F (2�; u) (67)
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Using these results in conjunction with the state space representation already given
in section 5.1 completes the CAB-AFNSM(3) speci�cation. Figure 6 plots the CAB-
AFNSM(3) SSRs estimated from the GSW10 and GSW30 data sets with the IEKF(1e-
8) method.
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Figure 6: CAB-AFNSM(3) shadow short rates estimated with the GSW10 and GSW30
data sets and the IEFK(1e-8)

The two SSRs are obviously distinctly di¤erent, and the GSW10 estimates appear
unusually negative compared to all other results presented in this article so far. The
explanation for that result is that the CAB-AFNSM(3) appears overly �exible for the
maturity span of 10 years. More precisely, the GAB-GATSM(3) allows an extra degree
of �exibility for the expected path of the shadow short rate compared to the current
SSR, i.e. the �rst line of equation 65 is:

~Et [r (t+ �)] = x1;t + x2;t � exp (���)� x3;t � �� exp (���) (68)

while the CAB-AFNSM(3) SSR at any point in time is rt = b00xt = x1;t + x2;t. There-
fore, the CAB-AFNSM(3) allows the current level of the SSR to di¤er from the short-
to mid-horizon expectations of the SSR, with the di¤erence dependent on the estimate
of the Bow state variable x3;t. For the GSW10 data set, x3;t reaches almost 20 percent
at times after late-2008, and the Slope state variable x2;t reaches almost -15 percent at
corresponding times. These are large o¤setting magnitudes suggestive of over�tting.
Conversely, the CAB-AFNSM(3) GSW30 Slope and Bow estimates always retain mag-
nitudes below 10 percent, and so using data with longer maturities appears to mitigate
the potential for over�tting within the CAB-AFNSM(3).

5.5 Discussion of results

Three broad results that are apparent from sections 5.2 to 5.4 are that the estimated
SSR results are sensitive to: (1) the data set used for the estimation; (2) the model
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speci�cation; and (3) the method of estimation.32 Aspect (3) may be resolved in
principle by using an estimation method that appropriately allows for higher degrees
of non-linearity in the measurement equation, which occurs when the data becomes
more constrained by the ZLB. However, aspects (1) and (2) are intrinsic to choices
by the researcher, thus highlighting that any results and comparisons of estimated
CAB-GATSM models need to be caveated explicitly in the context of those choices.
The wider question of which data set and model speci�cation is most appropriate, in
general or for a given application, remains open at this stage, although I make a few
brief related comments below.
The three observations regarding applications of CAB-GATSMs also hold implica-

tions for the application of Black models. In particular, estimates of Black models based
on EKF or linearized versions of the Kalman �lter will likely be subject to the same es-
timation issues illustrated here. Again, the precision and convergence of state variable
estimates is something that could be resolved with appropriate estimation techniques.
However, because Black framework implementations use numerical methods, the larger
number of numerical evaluations required for implementing and assessing alternative
estimation techniques may prove practically infeasible.
The CAB-GATSM results also o¤er some evidence on two important issues that,

due to space constraints, I cannot address fully in this article, i.e.: (1) how closely
the CAB-GATSM results approximate those that would otherwise have been obtained
using the Black framework; and (2) whether the SSR estimates for any model may ful�ll
the interpretation of an indicator of the stance of monetary policy across conventional
and unconventional monetary policy environments, as suggested in Krippner (2012 and
2013a).
On the �rst aspect, the close correspondence between the Black-GATSM(2) and

the CAB-GATSM(2) SSRs in �gure 2 suggests that the CAB-GATSM approximation
appears practically adequate in that particular case. Therefore, it is not unreasonable
to anticipate that a similar degree of approximation may carry through to the other
estimated models. Further investigation will be required, of course, but other reported
results to date are encouraging.33

32In other results not presented in this article due to space considerations, I found some sensitivity
with respect to the sample period and to the way the data sets were generated (for example, when
using Bloomberg zero coupon data which is generated by bootstrapping rather than the GSW data
which is generated by curve �tting). I also found very di¤erent results when using the EKF or low-
iteration IEKFs to estimate a given CAB-GATSM speci�cation with the same data but at di¤erent
frequencies (e.g. monthly, weekly, and daily). That variance of results was the initial reason I opted
for an IEKF with a tight precision. Using the IEKF(1e-8), the monthly results results in the present
article are very close to the results obtained with di¤erent data frequencies.
33For example, Christensen and Rudebusch (2013) p. 22 presents CAB-AFNSM(2) SSRs for Japan

(albeit estimated using the EKF) that are similar to the Kim and Singleton (2012) Black-GATSM(2)
estimates, and also see the discussion at the end of section 3.1 in the present article. As a related aside,
Christensen and Rudebusch (2013) p. 7 makes the very pertinent point: �Although many shadow-rate
term structure papers start with a theoretically consistent model, various simpli�cations are made to
facilitate empirical implementation.�Regarding the Black applications in the present article, Kim and
Singleton (2012) p. 46 notes the potential for discretization errors from the pragmatic choices for their
�nite di¤erence application, Ichiue and Ueno (2013) p. 11 notes that the Jensen e¤ect is ignored in
their lattice application, and Bauer and Rudebusch (2013) uses pre-estimated parameters for their
Monte Carlo simulation application. While all o¤er evidence that the e¤ect of the simplications
should be small, they are nevertheless approximations to the idealized Black framework, and their
e¤ect should ideally be assessed as a matter of course.
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On the second aspect, the CAB-AFNSM(2) GSW30 SSR estimates have a pro�le
and magnitude similar to the illustrative results reported in Krippner (2012),34 and are
therefore broadly consistent with the timing of unconventional monetary policy events
noted in that article. Speci�cally, the SSR �rst went negative around the announce-
ment of the �rst large scale asset purchase (LSAP) program in November 2008, became
more negative after the second LSAP program was pre-announced in August 2010, and
adopted the most negative values over 2011 to 2013 as forward guidance statements
were issued. In addition, the SSR estimate has risen since May 2013, following Federal
Reserve comments about tapering the third LSAP program that was originally intro-
duced in September and October 2012. In general, the SSR results based on GSW30
data are more stable and consistent across di¤erent CAB-GATSM speci�cations than
the GSW10 results. Further investigation of whether and how well SSRs from particu-
lar CAB-GATSM speci�cations and data sets match unconventional monetary events
would be required before any conclusions can be drawn, but it seems premature to
adopt the blanket recommendation from Christensen and Rudebusch (2013) p.23-24
against using estimated SSRs as a monetary policy indicator. Conversely, the SSR
estimates from the CAB-GATSM speci�cations using the GSW10 data sets already
appear either inconsistent with unconventional monetary events and/or quite variable,
particularly the CAB-AFNSM(3) results, and so they appear to already rule themselves
out as reliable monetary policy indicators.

6 Conclusion

In this article I have developed a tractable generic framework for imposing a zero lower
bound (ZLB) on Gaussian a¢ ne term structure models (GATSMs). My �currency-
adjusted bond�or CAB-GATSM framework is an approximation to the Black frame-
work in the sense that it uses shadow short rates to discount future contingent cash-
�ows, while the Black framework uses own-model ZLB rates for discounting. However,
the approximation appears to be acceptable in practice; i.e. encouragingly, the two-
factor CAB-GATSM shadow short rates I estimate from the data described in Ichiue
and Ueno (2013) are very similar to the two-factor Black-GATSM results from that
same paper
More generally, the CAB-GATSM framework is much more tractable expression

than the Black framework, because it produces closed form forward rate expressions
for any speci�cation. As I have shown in the empirical application of this article, that
tractability readily allows the estimation of models with more than two factors, on data
sets with long maturities, and using robust methods that potentially requiring many
iteration to achieve convergence for the state variable estimates.

34The results in Krippner (2012) obtained from model with calibrated parameters and non-linear
least squares estimation of the state variables from each month-end observation of yield curve
data.Krippner (2012) p. 25 reports a mean of -4.97 percent for the SSR from August 2010 to the
end of the sample (January 2012), while the mean of the GSW30 SSR results in the present article
for the same period is -5.68 percent.
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A General CAB forward rate and short rate

Appendix A.1 contains the detailed derivation of the general CAB forward rate expres-
sion f

¯
(t; �) in equation 25. Appendix A.2 contains the detailed results for the general

CAB short rate r
¯
(t) as summarized in equation 30. I note the use of elementary calculus

and limit operations for the bene�t of the reader, but without reference.

A.1 General CAB forward rate derivation

f
¯
(t; �) = lim

�!0

�
�1
�
log

�
P (t; � + �)� C (t; � ; �)
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(69)

where �Limit rules� refers to the standard rules of calculus for manipulating limits
of analytic functions, in this case the product limit rule, i.e. limx!a ff (x) � g (x)g =
limx!a f (x)�limx!a g (x) and the sum/di¤erence limit rule, i.e. limx!a ff (x)� g (x)g =
limx!a f (x)� limx!a g (x) In what immediately follows, I also use the quotient limit
rule, i.e. limx!a ff (x) =g (x)g = limx!a f (x) = limx!a g (x) if limx!a g (x) 6= 0, hence:

lim
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�
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1
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(70)
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where the result lim�!0 fC (t; � ; �)g = 0 may be obtained taking the limit of a generic
call option price expression with a strike price set to 1. For example, from Filipovíc
(2009) p. 109:

C (t; � ; �) = ~Et
�
exp

�
�
Z �

0

r (t+ u)du
�
�max [P (t+ � ; �)� 1; 0]

�
(71)

and the result of zero follows because the limit of the payo¤ component in all states is
zero, i.e.:

lim
�!0

fmax [P (t+ � ; �)� 1; 0]g = max
h
lim
�!0

fP (t+ � ; �)� 1g ; 0
i

= max [P (t+ � ; 0)� 1; 0]
= max [1� 1; 0]
= 0 (72)

The term lim�!0
�
d
d�P (t; � + �)

	
may be evaluated using the de�nition of di¤eren-

tiation as a limit with respect to a dummy variable �, reversing the order of the two
limit calculations, and then expressing the result as a di¤erential again, i.e.:
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Therefore, equation 69 becomes:

f
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where f(t; �) is obtained from the standard term structure relationship between forward
rates and bond prices, i.e.:

f (t; �) = � d
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and I leave z(t; �) implicit at this stage, i.e.:

z (t; �) = lim
�!0

�
d
d�

�
C (t; � ; �)
P (t; �)

��
(75)

pending the GATSM speci�cation for C(t; � ; �) and P(t; �) in section 4.

33



A.2 General CAB short rate derivation

I begin from the following standard term structure relationship:
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where the results lim�!0 ff (t; �)g = f(t; 0) = r(t) are term structure de�nitions, and I
have used the de�nition of di¤erentiation as a limit in the intermediate steps.
The limit of the derivative may be evaluated by substituting the payo¤ for the

expiring option C(t; 0; �), i.e.:
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where the result d
d�P(t; �) = �P(t; �) � f(t; �) is apparent from re-arranging equation

74 and substituting � for � , and the �nal step uses the limit rule for functions, i.e.
limx!a fg [f (x)]g = g [limx!a f (x)]. Finally, applying the product limit rule gives:

lim
�!0

f�P (t; �) � f (t; �)g = � lim
�!0

fP (t; �)g � lim
�!0

ff (t; �)g

= �1 � f (t; 0)
= �r (t) (78)

Substituting the option e¤ect result back through to the original expression in
equation 76 gives the �nal result:

r
¯
(t) = r (t) + max f�r (t) ; 0g

= max f0; r (t)g (79)
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B Shadow-GATSM forward rate derivation

Appendix B.1 derives the shadow-GATSM bond price expression P(t; �) given in sec-
tion 3.2, and appendix B.2 uses that derivation to obtain the shadow-GATSM forward
rate expression f(t; �) also given in section 3.2. Appendix B.3 derives the option ef-
fect expression z(t; �) in section 3.3, and appendix B.3 derives the annualized option
volatility expression ! (�).

B.1 Shadow-GATSM bond prices

Dai and Singleton (2002) p. 438 gives the following expression for GATSM bond prices:

P (t; �) = exp
�
�A (�)�B (�)0 x (t)

�
(80)

where:
B (�) = [I � exp (�~�0�)] ~�0�1b0 (81)

with I the N�N identity matrix. Dai and Singleton (2002) also provide an expression
for A (�) that applies to GATSMs with distinct eigenvalues for ~�, such as the two-factor
shadow-GATSMs that I specify in sections 5.2 and 5.3.35 I use a more general form for
A (�) that accommodates cases where ~� does not have distinct eigenvalues, such as the
restricted three-factor CAB-GATSM that I develop in section 5.4. Hence:

A (�) =
1

�

Z �

0

d
dv
A (v) dv (82)

where:

d
dv
A (v) = a0 +

Z v

0

[÷(b0; ~�; v � s)]0 �0
�Z v

s

� [÷(b0; ~�; u� s)] du
�
ds (83)

and [÷(b0; ~�; �)] the vector function of forward rate loadings:

[÷(b0; ~�; �)] = b00 exp (�~��) (84)

My expression for A (�) arises from the Heath, Jarrow, and Morton (1992) frame-
work with an explicit allowance for correlations as introduced by Tchuindjo (2008,
2009), i.e.:

d
d�
A (�) = a0 +

Z �

0

�
V (� ; s) ; �

Z �

s

V (u; s) du
�
ds (85)

where V (�; �) is the vector function of forward rate volatilities, � is the N�N matrix of
the correlations between the factor innovations, and h�; �i is the vector inner product.
In the GATSM context, V (� ; s) = [�1 � b0;1 �÷1 (~�; � � s) ; : : : ; �N � b0;N �÷N (~�; � � s)]0.
I express the vector inner product explicitly as ha; bi = a0b, and equivalently re-express
the standard deviations and correlation matrix in the form �0�; i.e.�0� = �0��, where
� = [�1; : : : ; �N ]

0. Therefore, equation 85 can be re-expressed in terms of forward

35Indeed, the subsequent results I obtain for those models are identical to those that would otherwise
have been obtained using the Dai and Singleton (2002) expression for bond prices, and my results are
readily extendable to replicate the Dai and Singleton (2002) results for N factors (as I note at the end
of appendix C.2).
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rate volatility loadings � (�) that already embed the correlations/covariances via the
constant volatility matrix �, i.e.:

� (�) = � [÷(b0; ~�; �)] (86)

which is the notation I have used in equation 83.

B.2 Shadow-GATSM forward rates

Shadow-GATSM forward rates may be derived using the standard relationship between
forward rates and bond prices, i.e.:

f (t; �) = � d
d�
logP (t; �)

=
d
d�

�
A (�) +B (�)0 x (t)

�
=

d
d�
A (�) +

d
d�
B (�)0 x (t) (87)

The derivative for A (�) with respect to time to maturity � has already been given
in equation 83 given how I have chosen to de�ne A (�). The derivative for B (�)0 with
respect to time to maturity � is:

d
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d
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= �b00~��1 � �~� exp (�~��)
= b00 exp (�~��)
= [÷(b0; ~�; �)] (88)

Substituting the expressions for d
d�A (�) and

d
d�B (�)

0 into equation 87 therefore
produces the �nal result as given in section 4.2, i.e.:

f (t; �) = a0 +
Z �

0

[÷(b0; ~�; � � s)]0 �0
�Z �

s

� [÷(b0; ~�; u� s)] du
�
ds+ [÷(b0; ~�; �)]

0 x (t)

(89)

C CAB-GATSM option e¤ect: limit derivation

This appendix provides a derivation of the option e¤ect in section 4.3 that uses GATSM
bond prices from Dai and Singleton (2002) p. 438, the generic closed-form analytic

36



expression for the price of call options on GATSM bonds from Filipovíc (2009) p.
109,36 and my option e¤ect expression in equation 26.
The expression for GATSM bond prices is already available in appendix B.1, and

Filipovíc (2009) p. 109 gives the price of a call option with a strike price of 1 on a
zero-coupon bond as:

C (t; � ; �) = P (t; � + �) � [d1 (t; � ; �)]� P (t; �) � [d2 (t; � ; �)] (90)

where � [�] is the cumulative normal distribution function, and:
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1
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log

�
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P (t; �)

�
� 1
2
� (� ; �) (91)

with:

� (� ; �) =

sZ �
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k� (s; �)k2 ds (92)

and:

� (s; �) =

Z s+�

s

� (u) du (93)

Substituting the generic call option expression into equation 26 then gives the fol-
lowing result for the option e¤ect:

z (t; �) = �f (t; �) �
�
1� �

�
f (t; �)
! (�)

��
+ ! (�) � 1p

2�
exp

 
�1
2

�
f (t; �)
! (�)

�2!
(94)

where � [�] is the standard univariate cumulative normal distribution function and ! (�)
is the annualized instantaneous option volatility derived in appendix B.4 as:

! (�) = lim
�!0

�
1

�
� (� ; �)

�
=

sZ �

0

[÷(b0; ~�; s)]
0 �0� [÷(b0; ~�; s)] ds (95)

36Filipovíc (2009) already assumes t = 0 (see Filipovíc (2009) footnote 1, p. 109) without loss
of generality, so no change of variables is required to convert from time-of-maturity notation to my
time-to-maturity notation. That is, T and S from Filipovíc (2009) are respectively equivalent to
my � and � + �. Also note that Chen (1995) provides the bond option expression for a two-factor
GATSM, and notes that the results readily extend to N factors, but that is only the case if ~� has
distinct eigenvalues. The generic Filipovíc (2009) expression accommodates GATSMs with repeated
eigenvalues for ~�, which accommodates the model in section 5.4. Christensen and Rudebusch (2013)
explicitly derive the bond option expression for the same model, but there is no need to do so given
the availability of the generic textbook result. Furthermore, as I establish in this appendix, and even
more directly in section 4.3, only the volatility and forward rate expressions that underlie the bond
option expression are required for the CAB-GATSM framework. Hence, there is no need to explicitly
calculate the shadow-GATSM bond option expressions, as suggested by Christensen and Rudebusch
(2013) p. 9, to evaluate the option e¤ect expression for any CAB-GATSM; one should just use the
GATSM volatility and forward rate expressions directly.
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Equation 26 may then be evaluated as:

z (t; �) = lim
�!0

�
d
d�

�
C (t; � ; �)
P (t; �)

��
= lim

�!0

�
d
d�

�
P (t; � + �) � [d1 (�)]� P (t; �) � [d2 (�)]

P (t; �)

��
= lim

�!0

�
d
d�

�
P (t; � + �)
P (t; �)

� [d1 (�)]� � [d2 (�)]
��

= lim
�!0

�
d
d�

�
P (t; � + �)
P (t; �)

�
� � [d1 (�)]

+
P (t; � + �)
P (t; �)

d
d�
� [d1 (�)]�

d
d�
� [d2 (�)]

�
hLimit rulesi = lim

�!0

�
d
d�

�
P (t; � + �)
P (t; �)

��
� lim
�!0

f� [d1 (t; � ; �)]g

+ lim
�!0

�
P (t; � + �)
P (t; �)

d
d�
� [d1 (�)]�

d
d�
� [d2 (t; � ; �)]

�
(96)

The details for deriving the three limits required for equation 96 are contained in
the following subsections, with the following respective results:

lim
�!0

�
d
d�

�
P (t; � + �)
P (t; �)

��
= �f (t; �) (97)

lim
�!0

f� [d1 (t; � ; �)]g = 1� �
�
f (t; �)
! (�)

�
(98)

where ! (�) is annualized option volatility (which I derive in section B.4), and:

lim
�!0

�
P (t; � + �)
P (t; �)

d
d�
� [d1 (�)]�

d
d�
N [d2 (�)]

�
= ! (�) � 1p

2�
exp

 
�1
2

�
f (t; �)
! (�)

�2!
(99)

The �nal result for z(t; �) is therefore:

z (t; �) = �f (t; �) �
�
1� �

�
f (t; �)
! (�)

��
+ ! (�) � 1p

2�
exp

 
�1
2

�
f (t; �)
! (�)

�2!
(100)

C.0.1 lim�!0

n
d
d�

h
P(t;�+�)
P(t;�)

io
The expression lim�!0

n
d
d�

h
P(t;�+�)
P(t;�)

io
in equation 96 may be evaluated by �rst calcu-

lating the following derivative:

lim
�!0

�
d
d�

�
P (t; � + �)
P (t; �)

��
= lim

�!0

�
1

P (t; �)
d
d�
P (t; � + �)

�
hLimit rulesi =

1

P (t; �)
� lim
�!0

�
d
d�
P (t; � + �)

�
=

1

P (t; �)
� lim
�!0

�
d
d�
P (t; � + �)

�
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The expression d
d�P(t; � + �) may be obtained using the result in equation 74 and

some re-arrangement, i.e.:

f (t; � + �) = � 1

P (t; � + �)
d

d [� + �]
P (t; � + �)

hChain rulei = � 1

P (t; � + �)
d
d�
P (t; � + �)

d�
d [� + �]

�f (t; � + �) � P (t; � + �) � d [� + �]
d�

=
d
d�
P (t; � + �) (101)

The �nal result is therefore:

1

P (t; �)
� lim
�!0

�
d
d�
P (t; � + �)

�
=

1

P (t; �)
� lim
�!0

�
�f (t; � + �) � P (t; � + �) � d [� + �]

d�

�
= � 1

P (t; �)
� lim
�!0

ff (t; � + �)g � lim
�!0

fP (t; � + �) � 1g

= �f (t; �) (102)

C.0.2 lim�!0 f� [d1 (t; � ; � + �)]g

The de�nition of the normal distribution � [x] in terms of the error function erf [x] is
as follows:

� [x] =
1

2
+
1

2
erf

�
1p
2
x

�
(103)

and the de�nition of the error function is itself:

erf [y] =
2p
�

1X
n=0

(�1)n [y]2n+1

n! (2n+ 1)
(104)

Substituting y = 1p
2
x and x = d1 (t; � ; �) into the preceding expressions gives:

� [d1 (t; � ; �)] =
1

2
+
1

2
� 2p
�

1X
n=0

(�1)n
h
1p
2
d1 (t; � ; �)

i2n+1
n! (2n+ 1)

(105)

and taking the limit gives:

lim
�!0

� [d1 (�)] =
1

2
+
1

2
� lim
�!0

8><>: 2p
�

1X
n=0

(�1)n
h
1p
2
d1 (�)

i2n+1
n! (2n+ 1)

9>=>;
hLimit rulesi =

1

2
+
1

2
� 2p
�

1X
n=0

(�1)n � lim�!0

�h
1p
2
d1 (�)

i2n+1�
n! (2n+ 1)

hLimit rulesi =
1

2
+
1

2
� 2p
�

1X
n=0

(�1)n
h
1p
2
� lim�!0 d1 (�)

i2n+1
n! (2n+ 1)

(106)

where �Limit rules�in the �nal line includes the power limit rule limx!a f[f (x)]ng =
f[limx!a f (x)]gn.
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The expression for lim�!0 d1 (t; � ; �) is derived directly from the expression in equa-
tion 91, i.e.:

lim
�!0

d1 (t; � ; �) = lim
�!0

�
1

� (� ; �)
log

�
P (t; � + �)
P (t; �)

�
+
1

2
� (� ; �)

�
hLimit rulesi = lim

�!0

�
1

� (� ; �)
log

�
P (t; � + �)
P (t; �)

��
+
1

2
lim
�!0

� (� ; �)

hL�Hopital�s rulei =
lim�!0

n
d
d� log

h
P(t;�+�)
P(t;�)

io
lim�!0

�
d
d�� (� ; �)

	 +
1

2
lim
�!0

� (� ; �) (107)

where L�Hopital�s rule has been applied to the �rst expression on the second line
of equation 107 because lim�!0� (� ; �) = 0 (which follows because the upper and
lower limits of the integral of equation 93 would be identical) meaning the limit would
otherwise be unde�ned (i.e. log [P (t; �) =P (t; �)] = log [1] = 0 and � (� ; 0) = 0).

The expression lim�!0

n
d
d� log

h
P(t;�+�)
P(t;�)

io
required for equation 107 is:

lim
�!0

�
d
d�
log

�
P (t; � + �)
P (t; �)

��
= lim

�!0

�
d
d�
(log [P (t; � + �)]� log [P (t; �)])

�
= lim

�!0

�
d
d�
log [P (t; � + �)]� d

d�
log [P (t; �)]

�
hChain rulei = lim

�!0

�
d

d [� + �]
log [P (t; � + �)] � d [� + �]

d�

�
= lim

�!0
f�f (t; � + �) � 1g

= �f (t; �) (108)

and lim�!0
�
d
d�� (� ; � + �)

	
is the expression for annualized instantaneous volatility,

which I derive in section B.4 and denote ! (�), i.e.:

lim
�!0

�
d
d�
� (� ; � + �)

�
= ! (�) (109)

Substituting these results into equation 107 gives:

lim
�!0

d1 (t; � ; �) = �
f (t; �)
! (�)

(110)

and the �nal result for lim�!0N[d1 (t; � ; �)] is obtained substituting that result into
equation 106, i.e.:

lim
�!0

� [d1 (t; � ; � + �)] =
1

2
+
1

2
� 2p
�

1X
n=0

(�1)n
h
1p
2
�
�
� f(t;�)
!(�)

�i2n+1
n! (2n+ 1)

=
1

2
+
1

2
� erf

�
� 1p

2

f (t; �)
! (�)

�
= �

�
� f (t; �)
! (�)

�
= 1� �

�
f (t; �)
! (�)

�
(111)
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C.0.3 lim�!0

n
P(t;�+�)
P(t;�)

d
d�� [d1 (t; � ; � + �)]�

d
d�� [d2 (t; � ; � + �)]

o
I �rst derive the terms P(t;�+�)P(t;�)

d
d�� [d1 (t; � ; �)] and

d
d�� [d2 (t; � ; �)] separately, and then

calculate the limit of their di¤erence (which I later denote as U (t; � ; �) for notational
convenience).

d
d�
� [d1 (t; � ; �)] =

d
dx
� [x]

d
d�
d1 (t; � ; �)

hChain rulei :

�
x = d1 (t; � ; �) ;

d
dx
N [x] =

1p
2�
exp

�
�1
2
x2
��

=
1p
2�
exp

�
�1
2
[d1 (t; � ; �)]

2

�
d
d�
d1 (t; � ; �) (112)

It turns out that d
d�d1 (t; � ; �) is not required in explicit form. Pre-multiplying by

P(t;�+�)
P(t;�) then gives:

P (t; � + �)
P (t; �)

d
d�
� [d1 (t; � ; �)] =

P (t; � + �)
P (t; �)

1p
2�
exp

�
�1
2
[d1 (�)]2

�
d
d�
d1 (�) (113)

Analogous to the derivative for � [d1 (t; � ; �)]:

d
d�
� [d2 (t; � ; �)] =

1p
2�
exp

�
�1
2
[d2 (t; � ; �)]

2

�
d
d�
d2 (t; � ; �) (114)

The term [d2 (t; � ; �)]
2 may be re-expressed as follows:

[d2 (t; � ; �)]
2 = [d1 (t; � ; �)� � (� ; �)]2

= [d1 (�)]2 � 2d1 (�) � (� ; � + �) + [� (� ; �)]2

= [d1 (�)]2 � 2
�

1

� (�) log
�
P (t; � + �)
P (t; �)

�
+
1

2
� (�)

�
� (�)� [� (�)]2

= [d1 (�)]2 � 2 � log
�
P (t; � + �)
P (t; �)

�
+ [� (�)]2 � [� (�)]2

= [d1 (�)]2 � 2 � log
�
P (t; � + �)
P (t; �)

�
(115)

and therefore:

exp

�
�1
2
[d2 (t; � ; �)]

2

�
= exp

�
�1
2

�
[d1 (�)]2 � 2 � log

�
P (t; � + �)
P (t; �)

���
= exp

�
�1
2
[d1 (�)]2

�
� exp

�
log

�
P (t; � + �)
P (t; �)

��
=

P (t; � + �)
P (t; �)

exp

�
�1
2
[d1 (t; � ; �)]

2

�
(116)

The derivative d
d�d2 (t; � ; �) is:

d
d�
d2 (t; � ; �) =

d
d�
[d1 (t; � ; �)� � (� ; �)]

=
d
d�
d1 (t; � ; �)�

d
d�
� (� ; �) (117)
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Substituting the results from equations 116 and 117 into equation 114 gives the
following expression:

d
d�
� [d2 (�)] =

1p
2�

P (t; � + �)
P (t; �)

exp

�
�1
2
[d1 (�)]2

� �
d
d�
d1 (�)�

d
d�
� (� ; �)

�
=

P (t; � + �)
P (t; �)

1p
2�
exp

�
�1
2
[d1 (�)]2

�
d
d�
d1 (�)

�P (t; � + �)
P (t; �)

1p
2�
exp

�
�1
2
[d1 (�)]2

�
d
d�
� (� ; �) (118)

When calculating U (t; � ; �) = P(t;�+�)
P(t;�)

d
d�� [d1 (t; � ; �)] �

d
d�� [d2 (t; � ; �)], note that

the expression P(t;�+�)
P(t;�)

1p
2�
exp

�
�1
2
[d1 (�)]2

�
d
d�d1 (�) in equation 113 cancels identically

with the �rst component from equation 118. Therefore:

U (t; � ; �) =
P (t; � + �)
P (t; �)

1p
2�
exp

�
�1
2
[d1 (�)]2

�
d
d�
� (�) (119)

and taking the limit results in three more limit expressions to derive, i.e.:

lim
�!0

U (t; � ; �) = lim
�!0

�
P (t; � + �)
P (t; �)

1p
2�
exp

�
�1
2
[d1 (�)]2

�
d
d�
� (� ; �)

�
hLimit rulesi = lim

�!0

�
P (t; � + �)
P (t; �)

�
� lim
�!0

�
1p
2�
exp

�
�1
2
[d1 (�)]2

��
� lim
�!0

�
d
d�
� (� ; �)

�
(120)

The expression lim�!0
�
d
d�� (� ; �)

	
= ! (�) is derived and denoted in section B.3.

The expression lim�!0

n
P(t;�+�)
P(t;�)

o
is readily derived, i.e.:

lim
�!0

�
P (t; � + �)
P (t; �)

�
=

P (t; �)
P (t; �)

= 1 (121)

The expression lim�!0

n
1p
2�
exp

�
�1
2
[d1 (�)]2

�o
is derived as follows. The de�nition

of the exponential function is:

exp [x] =

1X
n=0

xn

n!
(122)

Substituting x = �1
2
[d1 (t; � ; �)]

2 into equation 122 and taking the limit gives:

lim
�!0

�
1p
2�
exp

�
�1
2
[d1 (�)]2

��
=

1p
2�
lim
�!0

( 1X
n=0

�
�1
2
[d1 (�)]2

�n
n!

)

=
1p
2�
lim
�!0

( 1X
n=0

�
�1
2

�n
[d1 (�)]2n

n!

)

hLimit rulesi =
1p
2�

1X
n=0

�
�1
2

�n
lim�!0

�
[d1 (�)]2n

	
n!

hLimit rulesi =
1p
2�

1X
n=0

�
�1
2

�n
[lim�!0 d1 (t; � ; �)]

2n

n!
(123)
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The result lim�!0 [d1 (t; � ; �)] = � f(t;�)
!(�)

is available from equation 110, and so

lim
�!0

�
1p
2�
exp

�
�1
2
[d1 (t; � ; �)]

2

��
=

1p
2�

1X
n=0

�
�1
2

�n h� f(t;�)
!(�)

i2n
n!

=
1p
2�

1X
n=0

�
�1
2

�n�h� f(t;�)
!(�)

i2�n
n!

=
1p
2�

1X
n=0

�
�1
2

h
f(t;�)
!(�)

i2�n
n!

=
1p
2�
exp

 
�1
2

�
f (t; �)
! (�)

�2!
(124)

The �nal result for lim�!0 U (t; � ; �) is therefore:

lim
�!0

U (t; � ; �) = 1 � 1p
2�
exp

 
�1
2

�
f (t; �)
! (�)

�2!
� ! (�)

= ! (�) � 1p
2�
exp

 
�1
2

�
f (t; �)
! (�)

�2!
(125)

C.1 Annualized instantaneous volatility

I de�ne annualized instantaneous volatility ! (�) as the annualized limit of the option
volatility expression from equation 92 and denote it ! (�), i.e.:

! (�) = lim
�!0

�
1

�
� (� ; �)

�
hL�Hopital�s rulei =

lim�!0
�
d
d�� (� ; �)

	
lim�!0

�
d
d��
	

= lim
�!0

�
d
d�
� (� ; �)

�
(126)

because lim�!0
�
d
d��
	
= 1.
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The expression lim�!0
�
d
d�� (� ; �)

	
may be calculated as follows:

lim
�!0

�
d
d�
� (� ; �)

�
= lim

�!0

�
d
d�

q
[� (� ; �)]2

�
hChain rulei = lim

�!0

�
d
dx

p
x
d
d�
[� (� ; �)]2

�
�
x = [� (� ; � + �)]2 ;

d
dx

p
x =

1

2
x�1=2 =

1

2
p
x

�
= lim

�!0

(
d
d� [� (� ; �)]

2

2� (� ; �)

)

hL�Hopital�s rulei =
lim�!0

�
d
d�

�
d
d� [� (� ; �)]

2�	
2 � lim�!0

�
d
d�� (� ; �)

	
=

lim�!0

n
d2

d�2
[� (� ; �)]2

o
2 � lim�!0

�
d
d�� (� ; �)

	 (127)

Note that L�Hopital�s rule has been used in the second-last step of equation 127 because
in the middle line both d

d� [� (� ; �)]
2 = 2� (� ; �) d

d�� (� ; �) and 2� (� ; �) would equal
zero when evaluated at � = 0 (see equations 92 and 93), which would leave the limit
unde�ned.
Re-arranging equation 127 gives:�

lim
�!0

�
d
d�
� (� ; �)

��2
=
1

2
� lim
�!0

�
d2

d�2
[� (� ; �)]2

�
(128)

and therefore:

! (�) =

s
1

2
� lim
�!0

�
d2

d�2
[� (� ; �)]2

�
(129)

For the calculation itself, [� (� ; �)]2 is obtained from equation 92 with the substi-
tution of equation 93, i.e.:

[� (� ; �)]2 =

Z �

0

k� (s; �)k2 ds

=

Z �

0





Z s+�

s

� (u)du





2 ds
=

Z �

0

 �Z s+�

s

� (u)du
�0 �Z s+�

s

� (u)du
�!
ds

=

Z �

0

 �Z �

0

� (s+ v)dv
�0 �Z �

0

� (s+ v)dv
�!
ds (130)

where I have re-expressed the square of the vector norm kak2 equivalently as the vector
inner product a0a in line 3, and have undertaken a change of variables v = u � s in
line 4. The �rst derivative may then be obtained directly using the chain rule and the
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fundamental rule of calculus d
dx

R x
c
y (t)dt = y (x), i.e.:

d
d�
[� (� ; �)]2 =

d
d�

Z �

0

 �Z �

0

� (s+ v)dv
�0 �Z �

0

� (s+ v)dv
�!
ds

=

Z �

0

d
d�

 �Z �

0

� (s+ v)dv
�0 �Z �

0

� (s+ v)dv
�!
ds

=

Z �

0

(�
d
d�

Z �

0

� (s+ v)dv
�0 �Z �

0

� (s+ v)dv
�

+

�Z �

0

� (s+ v)dv
�0 �

d
d�

Z �

0

� (s+ v) dv
�)
ds

=

Z �

0

�
[� (s+ �)]0

�Z �

0

� (s+ v)dv
�

+

�Z �

0

� (s+ v)dv
�0
[� (s+ �)]

)
ds (131)

and the second derivative directly as:

d2

d�2
[� (� ; �)]2 =

d
d�

�
d
d�
[� (� ; �)]2

�
=

Z �

0

d
d�

�
[� (s+ �)]0

�Z �

0

� (s+ v)dv
�

+

�Z �

0

� (s+ v)dv
�0
[� (s+ �)]

)
ds

=

Z �

0

�
[� (s+ �)]0

�
d
d�

Z �

0

� (s+ v)dv
�

+

�
d
d�

Z �

0

� (s+ v) dv
�0
[� (s+ �)]

+
d
d�
[� (s+ �)]0

�Z �

0

� (s+ v)dv
�

+

�Z �

0

� (s+ v)dv
�0
d
d�
[� (s+ �)]

)
ds

=

Z �

0

�
[� (s+ �)]0 [� (s+ �)]

	
ds+

Z �

0

[� (s+ �)]0 [� (s+ �)]ds

+

Z �

0

U (s; �)ds

= 2

Z �

0

[� (s; �)]0 [� (s; �)]ds+
Z �

0

U (s; �)ds (132)

where I have used the notation
R �
0
U (s; �)ds to avoid the unnecessary repetition of the

terms in lines 6 and 7, given they become zero when lim�!0 f�g is applied (i.e. the
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upper and lower limits of the integrals
R �
0
� (s+ v)dv in U (s; �) become equal, while

d
d� [� (s+ �)] remains well-de�ned).
Therefore the �nal expression of ! (�) is

! (�) =

s
1

2
� lim
�!0

�
d2

d�2
[� (� ; �)]2

�

=

s
1

2
� lim
�!0

�
2

Z �

0

[� (s+ �)]0 [� (s+ �)] ds
�

=

sZ �

0

[� (s)]0 [� (s)] ds (133)

Finally, with reference to equation 83 in section B.1, the volatility function [� (s)]
may be expressed as [� (s)] = � [÷(b0; ~�; s)] for the shadow-GATSM. That expression
therefore produces the �nal result as given in section 4.3, i.e.:

! (�) =

sZ �

0

[÷(b0; ~�; s)]
0 �0� [÷(b0; ~�; s)] ds (134)

D CAB-GATSM option e¤ect: forward measure
derivation

This appendix provide the details for the option e¤ect derivation summarized in section
4.3.
First, it is a standard result for any term structure model that the expected value of

the short rate under the risk-adjusted t+ � forward measure equals the forward rate.37

Hence, for any shadow term structure model:

~Et+� fr (t+ �) jFtg = f (t; �) (135)

where Ft represents the information set available at time t, and expectations are formed
conditional on Ft.
The distribution of ~Et+� fr (t+ �) jFtg requires the distribution of x (t+ �) under

the risk-adjusted measure. That result can be established more directly from the
solution of the stochastic di¤erential equation for x (t), i.e. dx (t) = ~�

h
~� � x (t)

i
dt +

�dW (t) as given in equation 35. Meucci (2010) p. 3, for example, gives the following
solution for x (t+ �) conditional on x (t):38

x (t+ �) = [I � exp (�~��)] ~� + exp (�~��)x (t) +
Z �

0

� exp (�~�s)dW (s) (136)

37See, for example, Filipovíc (2009) p. 107, James and Webber (2000) p. 99-100, or Klebaner (2005)
p. 337 which discusses the Heath, Jarrow, and Morton (1992) framework under the forward measure.
These references all use time and time of maturity notation ~ET fr (T ) jFtg = f(t; T ), which I express
equivalently using my time and time to maturity notation.
38I have made the substitution s = v � t to convert the integral

R t+�
t

� exp (�~� [v � t])dW (v) from
Meucci (2010) to my integral expression in equation 136.
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Therefore, the covariance matrix for x (t+ �) may be expressed as:

cov [x (t+ �)] =
Z �

0

[exp (�~�s)]0 �0� [exp (�~�s)]ds (137)

and the variance of r(t+ �) is:

[! (�)]2 = var [r (t+ �)]

= b00 cov [x (t+ �)] b0

= b00

�Z �

0

[exp (�~�s)]0 �0� [exp (�~�s)] ds
�
b0

=

Z �

0

[÷(b0; ~�; s)]
0 �0� [÷(b0; ~�; s)] ds (138)

Combining the mean and variance results gives the distribution of risk-adjusted
short rates under the t + � forward measure for the generic shadow-GATSM as the
following normal distribution:

r (t+ �) � N
�
f (t; �) ; [! (�)]2

	
(139)

Using that distribution, the option e¤ect for the CAB-GATSM may then be ob-
tained as the expected value ofmax f� r (t+ �) ; 0g under the risk-adjusted t+� forward
measure. Speci�cally, repeating the following result from the main text:

z (t; �) = ~Et+� [max f� r (t+ �) ; 0g]

= �
Z 0

�1
r (t+ �) � Prob [r (t+ �)] d r (t+ �) (140)

and substituting y � r(t+ �) for notational convenience results in the following expres-
sion to solve:

z (t; �) =
Z 0

�1
� y � 1

! (�)
� 1p
2�
exp

 
�1
2

�
y � f (t; �)
! (�)

�2!
dy (141)

I believe the inde�nite integral may be solved via substitution and integration by
parts, but I have simply used Mathematica to obtain that result. The expression for
the de�nite integral is then:

z (t; �) = ! (�) � 1p
2�
exp

 
�1
2

�
y � f (t; �)
! (�)

�2!
� f (t; �) � 1

2
erf

�
1p
2

y � f (t; �)
! (�)

������
0

�1

= ! (�) � 1p
2�
exp

 
�1
2

�
f (t; �)
! (�)

�2!
� 0

�f (t; �) �
�
1

2
erf

�
1p
2

�f (t; �)
! (�)

�
� 1
2

�
= ! (�) � 1p

2�
exp

 
�1
2

�
y � f (t; �)
! (�)

�2!
� f (t; �) �

�
1

2
� 1
2
erf

�
1p
2

f (t; �)
! (�)

��

= � f (t; �) �
�
1� �

�
f (t; �)
! (�)

��
+ ! (�) � 1p

2�
exp

"
�1
2

�
f (t; �)
! (�)

�2#
(142)
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where erf [�] is the error function, and the �nal substitution follows from the de�nition
of the unit cumulative normal distribution in terms of the error function, i.e.:

� [x] =
1

2
+
1

2
erf

�
xp
2

�
so therefore:

1� � [x] = 1�
�
1

2
+
1

2
erf

�
xp
2

��
=

1

2
� 1
2
erf

�
xp
2

�
(143)

E Applying the iterated extended Kalman �lter

This appendix contains the details underlying the application of the IEKF to CAB-
GATSM speci�cation in general. Appendix E.1 provides an overview of the IEKF
algorithm and estimation via maximum likelihood, appendix E.2 presents further de-
tails underlying each of the individuals steps of the algorithm, and section E.3 brie�y
describes the parameter restrictions I have used for the estimations in sections 5.2 to
5.4.

E.1 IEKF and CAB-GATSM estimation overview

I adopt the IEKF algorithm and notation from Simon (2006). Hence, in what follows,
x�t and P

�
t are the prior estimates of the state vector and its covariance at the integer

time step t, x+t;i and P
+
t;i are the posterior estimates at iteration i and t, and x

+
t and

P+t are the �nal posterior estimates at t.
The four steps I summarize below follow the IEKF summary from Simon (2006) p.

412, and they are analogous to the standard (linear) Kalman �lter with the following
exception: the constant K�N matrix H of coe¢ cients that relates observations to the
state in the standard Kalman �lter is replaced with H

�
x+t;i;A

�
. The latter is obtained

as the partial derivative of R
¯
[x (t) ;A] with respect to x (t) evaluated at x+t;i, and a new

evaluation of H
�
x+t;i;A

�
is required at each iteration i and time step t. However, it

conveniently turns out (from the perspective of empirical implementation), as I detail
in appendix E.2.3, that evaluating H

�
x+t;i;A

�
requires no more numerical evaluations

than are already required to obtain R
¯

�
x+t;i;A

�
.

E.1.1 IEKF steps

1. Initialization:

x+0 = � (144a)

P+0 = V�(1)V �1 (144b)

where � = V �DV �1 with �D =diag[�1; : : : ; �i : : : ; �N ] and:

[� (1)]ij =
1

�i + �j
(145)
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2. Prior estimates:

x�t+1 = [I � F ] � + Fx+t (146a)

P�t+1 = FP+t F
0 +�(�) (146b)

where:
[� (�t)]ij =

1

�i + �j
[1� exp (�f�i + �jg�t)] (147)

3. Measurement updates:

Set : x+t;0 = x
�
t (148a)

ITERATE : on i (148b)

Ht;i =
@

@x (t)
R
¯
[x (t) ;A; � k]

����
x(t)=x+t;i

(148c)

Mt;i = Ht;iP
�
t H

0
t;i + 
� (148d)

Kt;i = P�t H
0
t;iM

�1
t;i (148e)

�t;i = R
¯ t
� R
¯

�
x+t;i;A

�
�Ht;i

�
x�t � x+t;i

�
(148f)

x+t;i+1 = x�t;i +Kt;i �t;i (148g)

EXIT : at max (i) or a tolerance for
�
x+t;i+1 � x+t;i

�
(148h)

4. Posterior estimates:

x+t = x+t;i+1 (149a)

P+t = (I �Kt;iHt;i)P
+
t;i (149b)

Note that the EKF is nested within the IEKF procedure outlined in Simon (2006),
because the zeroth iteration is set to the posterior estimate. Therefore, EKF results
may be obtained by choosing not to iterate after the �rst update step; i.e. with
x+t;0 = x

�
t , x

�
t � x+t;0 = 0, and so x+t = x�t +Kt

�
R
¯ t
� R
¯

�
x�t ;A

��
. However, some initial

results using the EKF in related work proved suspiciously variable (see footnote , which
ultimately led me to iterate the IEKF until all elements of

��x+t;i+1 � xt;i+1�� were each
less than 1e-8. I illustrate and discuss this issue in section 5.4.

E.1.2 Parameter estimation

Each update of the IEKF for a given set of parameters A provides a log-likelihood
value as follows:

logL (fR
¯ 1
; : : : ;R

¯ T
g ;A) = �1

2

TX
t=1

K log (2�) + logMt;i + �
0
t;iM

�1
t;i �t;i (150)

and I use the Nelder-Mead algorithm (from the �fminsearch�function in the MatLab
Optimization Toolbox) to �nd the parameter set A for the given model speci�cations
(in sections 5.3 to 5.5) that maximize the log-likelihood value. The tolerance I use to
indicate convergence to the maximum value is 0.01 log-likelihood points.
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E.2 Iterated extended Kalman �lter steps

E.2.1 Initialization

The state variable vector and its covariance matrix should be initialized at their un-
conditional expected values, which for the CAB-GATSM are respectively E0 [x (t)] and
E0
�
fx (t)� E0 [x (t)]g fx (t)� E0 [x (t)]g0

�
. Calculating those quantities requires the

solution for the dynamic process of the state variable vector x (t) under the physical
measure. That solution may be obtained by directly solving the stochastic di¤erential
equation, which is analogous to the solution already presented in appendix B.5 (or see,
for example, Klebaner (2005) p. 127-28). Hence:

x (t) = [I � exp (��t)] � + exp (��t)x (0) +
Z t

0

� exp (��v)dW (v) (151)

where x (0) is the initial value of x (t), i.e. at time t = 0. The expected value of x (t)
as at time t = 0 is therefore:

E0 [x (t)] = [I � exp (��t)] � + exp (��t)x (t) (152)

and so the unconditional expectation of x (t), i.e. with t = 0 in the in�nite past relative
to the present time t, is:

lim
t!1

E0 [x (t)] = [I � 0] � + 0x (t)

= � (153)

Hence, x+0 = � is the appropriate initial value for the IEKF.
The covariance matrix for x (t) at time t is:


x;t [x (t)] =

Z t

0

[exp (��v)]0 �0� exp (��v)ds

=

Z t

0

�
exp

�
�V �DV �1v

��0


�
exp

�
�V �DV �1v

��
dv

=

Z t

0

�
V exp (��Dv)V �1

�0


�
V exp (��Dv)V �1

�
dv

= V

�Z t

0

[exp (��Dv)]V
0�1
V [exp (��Dv)]dv

�
V �1

= V�(t)V �1 (154)

where � = V �DV
�1 is the eigensystem decomposition of the N � N mean-reversion

matrix �,39 and � is notation for the N � N matrix function resulting from the def-
inite integral. Making the substitution U = V

0�1
V for notational convenience, the

39Note that an allowance for repeated eigenvalues is not required because the only constraint I
impose on � is that the real part of the eigenvalues be non-negative; see appendix E.3. Conversely,
the three-factor model in section 5.4 constrains the risk-adjusted mean-reversion matrix ~� to have one
eigenvalue equal to 0 and two repeated eigenvalues equal to �. However, repeated eigenvalues in � could
readily be allowed for using the Jordan decomposition for � rather the eigensystem decomposition,
and that may be appropriate for numerical stability in some estimations.
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elements for � may be calculated as follows:

[� (t)]ij =

Z t

0

[exp (��iv)]Uij [exp (��jv)]dv

=

Z t

0

Uij exp (� [�i + �j] v)dv

= � 1

�i + �j
exp (� [�i + �j] s)

����t
0

=
1

�i + �j
[1� exp (� [�i + �j] t)] (155)

Hence, the unconditional expectation of x (t) is:

lim
t!1


x;0 [x (t)] = V�(1)V �1 (156)

where:

[� (1)]ij = lim
t!1

[� (t)]ij

=
1

�i + �j
(157)

E.2.2 Prior estimates

The prior estimate is the expected value of the state variable vector for the next time
step, x (t+�t) conditional on its current value x (t). The required expression may be
obtained via the conditional expectation result under the physical measure, which is
analogous to the solution already presented in appendix B.5. Speci�cally:

x (t+ �) = [I � exp (���)] � + exp (���)x (t) +
Z �

0

� exp (��s)dW (s) (158)

and then substituting the time increment �t for � and taking expectations under the
risk-adjusted measures as at time t gives:

~Et [x (t+�t)] = [I � exp (�~��t)] ~� + exp (�~��t)x (t) (159)

Allowing for innovations to the state equation, that result may be re-expressed as:

x (t+�t) = [I � F ] ~� + Fx (t) + " (t+�t) (160)

where:
F = exp (���t) (161)

and " (t+�t) is an N � 1 vector of innovations with the N �N covariance matrix:


" =

Z �

0

exp (��s)�0� exp (��s)ds

= V�(�)V �1 (162)
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and the expression V�(�)V �1 results from an eigensystem decomposition analogous
to that in appendix C.1.1. The elements of �(�) are:

[� (�)]ij =
1

�i + �j
[1� exp (� [�i + �j] �)] (163)

Finally, as in the main text, I further re-express equation 160 using the subscript t
to represent an integer index of time increments �t over the sample period from time
t to T , i.e.:

xt+1 = [I � F ] ~� + Fxt + "t+1 (164)

E.2.3 Measurement updates

CAB-GATSM interest rates There is no closed-form analytic solution available
for CAB-GATSM interest rates R

¯
(xt;A; � k) required in the measurement equation,

because the solution involves the integral of the standard cumulative normal distribu-
tion. However, the integral can be approximated to arbitrary precision using numerical
methods. A particularly convenient form is a rectangular rule with constant time-to-
maturity increments �� and end-increment function values, i.e.:

R
¯
(xt;A; � k) '

1

� k

 
IkX
i=1

f
¯
(xt;A; i��)��

!
(165)

where Ik = � k=�� , and f¯
(xt;A;��), f¯

(xt;A; 2��), : : :, f¯
(xt;A; Ik��) is a sequence of

forward rates f
¯
(xt;A; u) for times to maturity u = i�� and:

f
¯
(xt;A; u) = f (xt;A; u) � �

�
f (xt;A; u)
! (A; u)

�
+ ! (A; u) � 1p

2�
exp

 
�1
2

�
f (xt;A; u)
! (A; u)

�2!
(166)

Equation 165 turns out to be an arithmetic mean, i.e.:

R
¯
(xt;A; � k) ' 1

� k

 
IkX
i=1

f
¯
(xt;A; i��)��

!

=
1

� k
��

IkX
i=1

f
¯
(xt;A; i��)

=
1

� k

� k
Ik

IkX
i=1

f
¯
(xt;A; i��)

=
1

Ik

IkX
i=0

f
¯
(xt;A; i��)

= mean ff
¯
(t;A;��) ; f

¯
(t;A; 2��) : : : ; f

¯
(t;A; Ik��)g (167)

Note that, while equations 167 and 166 provide convenient and transparent nota-
tion, the values of R

¯
(xt;A; � k) should not be calculated independently for each time

to maturity as written. Doing so would result in a very ine¢ cient replication of nu-
merical evaluations for f(xt;A; u), ! (A; u), and associated calculations for values of u
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that are common to all maturities. Rather, I �rst calculate a single series of shadow-
GATSM forward rates and annualized option volatilities out to the longest time to
maturity �K ; i.e. f(xt;A;��) ;f(xt;A; 2��) ; : : : ;f(xt;A; �K) and ! (A;��), ! (A; 2��),
: : :, ! (A; �K). I use those results to obtain the associated CAB-GATSM forward rates
f
¯
(xt;A;��), f¯

(xt;A; 2��), : : :, : : :, f¯
(xt;A; �K) for each time to maturity, and then ob-

tain all values of R
¯
(xt;A; � k) at once by calculating the respective means of that series

up to the elements I1 = � 1=�� , I2 = � 2=�� , : : :, IK = �K=�� .

CAB-GATSM Jacobian At any given iteration i, the Jacobian Ht;i could be eval-
uated numerically at the cost of numerically evaluating the combinations of the ele-
ments R

¯
[xi (t) + �x;A; � k] and R¯

[xj (t) + �x;A; � k] in addition to the central value
R
¯
[x (t) ;A; � k]. However, it turns out that the closed-form analytic expression for for-
ward rates in the CAB-GATSM framework can again be exploited, which leads to an
expression for the Jacobian that requires no numerical evaluations in addition to those
already undertaken to obtain R

¯
[x (t) ;A; � k]. Speci�cally, I begin with the de�nition of

the element of the Jacobian Ht;i corresponding to the interest rate R¯
[x (t) ;A; � k], and

then re-express the latter in terms of forward rates, i.e.:

Ht;i =
@

@x (t)
R
¯
[x (t) ;A; � k]

����
x(t)=x+t;i

=
@

@x (t)

�
1

� k

Z �k

0

f
¯
[x (t) ;A; u] du

�����
x(t)=x+t;i

=
1

� k

Z �k

0

@

@x (t)
f
¯
[x (t) ;A; u] du

����
x(t)=x+t;i

(168)

Omitting the dependence on the parameter set A for notational convenience, the
CAB-GATSM forward rate expression f

¯
[x (t) ; u] is as follows:

f
¯
[x (t) ; u] = f (t; �) � �

�
f (t; u)
! (u)

�
+ ! (u) � 1p

2�
exp

 
�1
2

�
f (t; u)
! (u)

�2!
(169)

and the partial di¤erential of f
¯
[x (t) ; u] with respect to x (t) is:

@

@x (t)
f
¯
[x (t) ; u] =

@

@xn (t)
f [x (t) ; u] � �

�
f [x (t) ; u]
! (u)

�
+f [x (t) ; u] � @

@x (t)
�

�
f [x (t) ; u]
! (u)

�
+! (u) � 1p

2�
� @

@x (t)
exp

 
�1
2

�
f [x (t) ; u]
! (u)

�2!
(170)

I evaluate the result for each line in turn. Hence, the partial di¤erential of f[x (t) ; u]
with respect to x (t) is:

@

@x (t)
f [x (t) ; u] =

@

@x (t)

�
VE (x (t) ; u) + [÷(b0; ~�; u)]

0 x (t)
	

= [÷(b0; ~�; u)]
0 (171)

53



the partial di¤erential of �
h
f[x(t);u]
!(u)

i
with respect to x (t) is:

@

@x (t)
� [�] = @

@y
� [y]

@

@x (t)

�
f [x (t) ; u]
! (u)

�
hChain rulei :

�
y =

f [x (t) ; u]
! (u)

;
@

@y
� [y] =

1p
2�
exp

�
�1
2
y2
��

=
1p
2�
� exp

 
�1
2

�
f [x (t) ; u]
! (u)

�2!
� @

@x (t)
f [x (t) ; u] � 1

! (u)

=
1p
2�
� exp

 
�1
2

�
f [x (t) ; u]
! (u)

�2!
� 1

! (u)
� [÷(b0; ~�; u)]0 (172)

and the partial di¤erential of exp
�
�1
2

h
f[x(t);u]
!(u)

i2�
with respect to x (t) is:

@

@x (t)
exp (�) =

@

@x (t)
exp

 
�1
2

�
f [x (t) ; u]
! (u)

�2!

hChain rulei =
@

@y
exp (y)

@

@xn (t)

 
�1
2

�
f [x (t) ; u]
! (u)

�2!
*
y = �1

2

�
f [x (t) ; u]
! (u)

�2
;
@

@y
exp (y) = exp (y)

+

hChain rulei = exp

 
�1
2

�
f [x (t) ; u]
! (u)

�2!
@

@z

�
�1
2
z2
�

@

@xn (t)

�
f [x (t) ; u]
! (u)

�
�
z =

f [x (t) ; u]
! (u)

;
@

@y

�
�1
2
z2
�
= �z

�
= � exp

 
�1
2

�
f [x (t) ; u]
! (u)

�2! f [x (t) ; u]
! (u)

� 1

! (u)
� @

@x (t)
f [x (t) ; u]

= � exp
 
�1
2

�
f [x (t) ; u]
! (u)

�2!
� f [x (t) ; u]
[! (u)]2

� [÷(b0; ~�; u)]0 (173)

Therefore, the �nal expression for the partial di¤erential of f
¯
[x (t) ; u] with respect

to xn (t) is:

@

@x (t)
f
¯
(t; u) = [÷(b0; ~�; u)]

0 � �
�
f [x (t) ; u]
! (u)

�
+f [x (t) ; u]

1p
2�
� exp

 
�1
2

�
f [x (t) ; u]
! (u)

�2!
� 1

! (u)
� [÷(b0; ~�; u)]0

�! (u) � exp
 
�1
2

�
f [x (t) ; u]
! (u)

�2!
� f [x (t) ; u]
[! (u)]2

� [÷(b0; ~�; u)]0

= [÷(b0; ~�; u)]
0 � �

�
f [x (t) ; u]
! (u)

�
(174)
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Substituting the result for @
@x(t)

f
¯
(t; u) into equation 168 then gives:

Ht;i =
1

� k

Z �k

0

[÷(b0; ~�; u)]
0 � �

�
f [x (t) ; u]
! (u)

�
du

����
x(t)=x+t;i

=
1

� k

Z �k

0

[÷(b0; ~�; u)]
0 � �

"
f
�
x+t;i; u

�
! (u)

#
du (175)

Re-inserting the dependence on the parameter set A, it is clear that the numerical

evaluations of �
�
f(x+t;i;A;u)
!(u)

�
are already available from the evaluation of CAB-GATSM

forward rates required to evaluate interest rates R
¯
[x (t) ;A; � k].

E.2.4 Posterior estimates

For the state variable vector, the �nal posterior estimates x+t are set to the most
recent iteration of the IEKF, i.e. x+t;i+1. The associated �nal posterior estimate for the
covariance matrix P+t is calculated using the prevailing values of Kt;i and Ht;i, which
therefore ensures that x+t and P

+
t are based on values from the same iteration.

E.3 Parameter constraints

For the physical mean-reversion matrix �, I impose the constraints that each eigenvalue
of � always has a positive real part. If a realization during estimation is negative, I
restrict the real part to 1e-6 while retaining the original eigenvectors. I also ensure
that each standard deviation parameter is positive by using the standard mechanism

�ij =
q
��2ij > 0, where ��ij is the actual parameter estimated, and that each inno-

vation correlation parameter �ij is maintained between -1 and 1 using the standard
mechanism:40

�1 < �ij =
��ij

1 +
����ij�� < 1 (176)

where ��ij is the actual parameter estimated. Standard errors for the �nal parameter
estimates (with ��ij and �

�
ij converted back to �ij and �ij) are obtained using a numerical

Hessian evaluated around the �nal parameter estimates.

F CAB-GATSM(2) speci�cation

With b0 = [1; 1]
0 and ~� =diag[~�1; ~�2], the shadow-GATSM(2) forward rate factor load-

ing vector function [÷(b0; ~�; �)] becomes:

[÷(b0; ~�; �)]
0 = b00 exp (�~��)

= [1; 1] exp

�
�
�
~�1 0
0 ~�2

�
�

�
= [1; 1]

�
exp (�~�1�) 0

0 exp (�~�2�)

�
= [exp (�~�1�) ; exp (�~�2�)] (177)

40See, for example, 146-47 for discussion on these mechanisms.
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The expected path of the shadow short rate is therefore:

~Et [r (t+ �)] = a0 + b
0
0 exp (�~��) x (t)

= a0 + [exp (�~�1�) ; exp (�~�2�)]
�
x1 (t)
x2 (t)

�
= x1 (t) � exp (�~�1�) + x2 (t) � exp (�~�2�) (178)

With the volatility matrix:

�0 =

�
�1 0

�12�2 �2
p
1� �212

�
(179)

the forward rate volatility loadings are de�ned as � (�) = � [÷(b0; ~�; �)] and so the
volatility e¤ect is:

VE (�) =

Z �

0

[÷(b0; ~�; � � s)]0 �0
�Z �

s

� [÷(b0; ~�; s� u)] du
�
ds

=

Z �

0

�
[exp (�~�1 f� � sg) ; exp (�~�2 f� � sg)]

�
�21 �12�1�2

�12�1�2 �22

�
�
�Z �

s

�
exp (�~�1 fu� sg)
exp (�~�2 fu� sg)

�
du
�
ds
�

= �21 � L/L+ �22 � S/S+ �12�1�2 � L/S+ �12�1�2 � S/L
= �21 � L/L+ �22 � S/S+ �12�1�2 � (L/S+ S/L) (180)

where:

L/L =

Z �

0

exp (�~�1 [� � s])
�Z �

s

exp (�~�1 [u� s]) du
�
ds (181a)

S/S =
Z �

0

exp (�~�2 [� � s])
�Z �

s

exp (�~�2 [u� s]) du
�
ds (181b)

L/S =
Z �

0

exp (�~�1 [� � s])
�Z �

s

exp (�~�2 [u� s]) du
�
ds (181c)

S/L =
Z �

0

exp (�~�2 [� � s])
�Z �

s

exp (�~�1 [u� s]) du
�
ds (181d)

I calculate the expression for S/L explicitly, and the other results follow from ap-
propriate substitutions. Hence:Z �

s

exp (�~�2 [u� s]) du = � 1
~�1
exp (�~�1 [u� s])

�����
s

=
1� exp (�~�1 [� � s])

~�1
(182)
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S/L =

Z �

0

exp (�~�2 [� � s]) �
1� exp (�~�1 [� � s])

~�1
ds

=

Z �

0

1

~�1
exp (�~�2 [� � s])�

1

~�1
exp (� [~�1 + ~�2] [� � s]) ds

=
1

~�1~�2
exp (�~�2 [� � s])�

1

~�1 [~�1 + ~�2]
exp (� [~�1 + ~�2]1 [� � s])

�����
0

=
1

~�1~�2
[1� exp (�~�2�)]�

1

~�1 [~�1 + ~�2]
[1� exp (� [~�1 + ~�2] �)] (183)

The result for L/L is obtained by setting ~�2 = ~�1 in equation 183, i.e.:

L/L =
1

~�1~�1
[1� exp (�~�1�)]�

1

~�1 [~�1 + ~�1]
[1� exp (� [~�1 + ~�1] �)]

=
1

~�21
[1� exp (�~�1�)]�

1

2~�21
[1� exp (�2~�1�)]

=
1

2~�21
[2� 2 exp (�~�1�)� 1 + exp (�2~�1�)]

=
1

2~�21
[1� 2 exp (�~�1�) + exp (�2~�1�)]

=
1

2~�21
[1� exp (�~�1�)]2

=
1

2
[G (~�1; �)]

2 (184)

The result for S/S is obtained by setting ~�1 = ~�2 in equation 184, i.e.:

S/S =
1

2
[G (~�2; �)]

2 (185)

The result for L/S+S/L is obtained by switching ~�1 and ~�2 in equation 183 and
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adding the result for S/L, i.e.:

L/S+ S/L =
1

~�1~�2
[1� exp (�~�2�)]�

1

~�2 [~�1 + ~�2]
[1� exp (� [~�1 + ~�2] �)]

+
1

~�1~�2
[1� exp (�~�1�)]�

1

~�1 [~�1 + ~�2]
[1� exp (� [~�1 + ~�2] �)]

=
1

~�1~�2
[2� exp (�~�1�)� exp (�~�2�)]

� ~�1
~�1~�2 [~�1 + ~�2]

[1� exp (� [~�1 + ~�2] �)]

� ~�2
~�1~�2 [~�1 + ~�2]

[1� exp (� [~�1 + ~�2] �)]

=
1

~�1~�2
[2� exp (�~�1�)� exp (�~�2�)]

� [~�1 + ~�2]

~�1~�2 [~�1 + ~�2]
[1� exp (� [~�1 + ~�2] �)]

=
1

~�1~�2
f1� exp (�~�1�) + 1� exp (�~�2�)� 1� exp (� [~�1 + ~�2] �)g

=
1

~�1~�2
f1� exp (�~�1�)� exp (�~�2�)� exp (� [~�1 + ~�2] �)g

=
1

~�1~�2
[1� exp (�~�1�)] [1� exp (�~�2�)]

= G (~�1; �)G (~�2; �)

The �nal result for the volatility e¤ect is therefore:

VE (�) = �21 �
1

2
[G (~�1; �)]

2 + �22 �
1

2
[G (~�2; �)]

2 + �12�1�2 �G (~�1; �)G (~�2; �) (186)

The square of the annualized option volatility is calculated from the forward rate
factor loadings and volatility matrix as follows:

[! (�)]2 =

Z �

0

[÷(b0; ~�; s)]
0 �0� [÷(b0; ~�; s)] ds

=

Z �

0

[exp (�~�1s) ; exp (�~�2s)]
�

�21 �12�1�2
�12�1�2 �22

� �
exp (�~�1s)
exp (�~�2s)

�
ds

=

Z �

0

�
�21 � exp (�2~�1s) + �22 � exp (�2~�2s) + 2�12�1�2 � exp (� [~�1 + ~�2] s)

	
ds

= �21 �G (2~�1; �) + �22 �G (2~�2; �) + 2�12�1�2G (~�1 + ~�2; �) (187)

Note that the results above may readily be extended to any shadow-GATSM(2) with
a diagonal ~�. Furthermore, shadow-GATSMs with a non-diagonal matrix ~� may be
diagonalized using an eigensystem decomposition and an a¢ ne invariant transformation
(see Dai and Singleton (2002) footnote 9 on p. 438, or Singleton (2006) p. 319-20 for
a more general description of a¢ ne invariant transformations). Therefore, the results
presented here may be applied to represent any GATSM with distinct eigenvalues for
~�.
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G Shadow-AFNSM(2)

The shadow-AFNSM(2) could be obtained directly as in the previous section by setting
a0 = 0 and ~� =diag[0; �], which would produce the �rst two forward rate factor loadings
for the AFNSM(2). Speci�cally:

[÷(b0; ~�; �)]
0 = b00 exp (�~��)

= [1; 1] exp

�
�
�
0 0
0 �

�
�

�
= [1; 1]

�
1 0
0 exp (���)

�
= [1; exp (���)] (188)

where 1 and exp (���) are respectively the Level and Slope factor loadings for the
AFNSM(2) in its forward rate form. Those factor loadings could then be used to
directly calculate the volatility e¤ect and annualized option volatility as in the previous
section.
Alternatively, the results may be obtained more readily by taking the limit of ~�1 ! 0

for the results in the previous section and setting a0 = 0. Hence, for the ~Et [r (t+ �)]
expression lim~�1!0 exp (�~�1�) = 1, and substituting � = ~�2 for notational convenience
gives:

~Et [r (t+ �)] = x1 (t) + x2 (t) � exp (���) (189)

Regarding the volatility e¤ect, lim~�1!0G (~�1; �) is:

lim
~�1!0

G (~�1; �) = lim
~�1!0

�
1

~�1
[1� exp (�~�1�)]

�

hL�Hopital�s rulei =
lim~�1!0

n
d
d~�1
[1� exp (�~�1�)]

o
lim�1!0

n
d
d~�1
~�1

o
=

lim~�1!0 f� exp (�~�1�)g
lim~�1!0 f1g

= � (190)

and therefore, with � = ~�2, equation 186 becomes:

VE (�) = �21 �
1

2
� 2 + �22 �

1

2
[G (�; �)]2 + �12�1�2 � �G (�; �) (191)

The square of the annualized option volatility may be obtained using the same
evaluation of lim~�1!0G (~�1; �), and that for lim~�1!0G (2~�1; �), i.e.:

lim
~�1!0

G (2~�1; �) = lim
~�1!0

�
1

2~�1
[1� exp (�2~�1�)]

�

hL�Hopital�s rulei =
lim~�1!0

n
d
d~�1
[1� exp (�2~�1�)]

o
lim�1!0

n
d
d~�1
[2~�1]

o
=

lim~�1!0 f2� exp (�2~�1�)g
lim~�1!0 f2g

= � (192)
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and so,with � = ~�2, equation 187 becomes:

[! (�)]2 = �21 � � + �22 �G (2�; �) + 2�12�1�2G (�; �) (193)

H Shadow-AFNSM(3)

With b0 = [1; 1; 0] and:

~� =

24 0 0 0
0 � ��
0 0 �

35 (194)

the shadow-AFNSM(3) forward rate factor loading vector function [÷(b0; ~�; �)] becomes:

[÷(b0; ~�; �)] = b00 exp (�~��)

= [1; 1; 0] exp

0@�
24 0 0 0
0 � ��
0 0 �

35 �
1A (195)

Following Moler and Van Loan (2003) p. 24, the matrix exponential may be evalu-
ated via a decomposition into Jordan canonical form. That is, if A has the the Jordan
decomposition:

A = X[J1 � � � � � Jk]X�1 (196)

where � is the Kronecker sum (see, for example Higam (2008) p. 331, or below for a
practical example of its application) then the matrix exponential of A is:

exp (�A) = X[exp (�J1)� � � � � exp (�Jk)]X�1 (197)

The required Jordan decomposition for the AFNSM(3) ~� is:24 0 0 0
0 � ��
0 0 �

35 =
24 1 0 0
0 0 1
0 � 1

�
0

3524 0 0 0
0 � 0
0 1 �

3524 1 0 0
0 0 ��
0 1 0

35 (198)

which has two Jordan blocks, i.e. J1 = [0], and:

J2 =
�
� 0
1 �

�
(199)

The matrix exponentials of the two blocks are respectively exp (� J1�) = 1, and:

exp (� J2�) = exp (���)
�
1 0
� 1

�
=

�
exp (���) 0
� exp (���) exp (���)

�
(200)
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so therefore:

exp (�~��) = X

�
1�

�
exp (���) 0
� exp (���) exp (���)

��
X�1

=

24 1 0 0
0 0 1
0 � 1

�
0

3524 1 0 0
0 exp (���) 0
0 � exp (���) exp (���)

3524 1 0 0
0 0 ��
0 1 0

35
=

24 1 0 0
0 exp (���) ��� exp (���)
0 0 exp (���)

35 (201)

The �nal expression for [÷(b0; ~�; �)]
0 is then:

[÷(b0; ~�; �)] = b00 exp (�~��)

= [1; 1; 0]

24 1 0 0
0 exp (���) ��� exp (���)
0 0 exp (���)

35
= [1; exp (���) ;��� exp (���)] (202)

where 1, exp (���), and �� exp (���) are respectively the Level, Slope, and Bow (or
Curvature) factor loadings for the AFNSM(3) in its forward rate form.
Setting a0 = 0, the expected path of the shadow short rate is:

Et [r (t+ �)] = b00 exp (�~��) x (t)

= [1; exp (���) ;��� exp (���)]

24 x1 (t)x2 (t)
x3 (t)

35
= x1 + x2 � exp (���)� x3 � �� exp (���) (203)

Note that could re-de�ne the Bow loading to enter positively in Et [r (t+ �)], as in
Christensen and Rudebusch (2013), but that choice would need to be carried through
consistently to the volatility e¤ect and annualized option volatility calculations below.
With the volatility matrix:

�0 =

2664
�1 0 0

�2�12 �2
p
1� �212 0

�3�13 �3
�23��12�13p

1��212
�3

q
1� �213 �

(�23��12�13)2
1��212

3775 (204)

the forward rate volatility loadings are de�ned as � (�) = � [÷(b0; ~�; �)] and so the

61



volatility e¤ect is:

VE (�) =

Z �

0

[÷(b0; ~�; � � s)]0 �0
�Z �

s

� [÷(b0; ~�; s� u)] du
�
ds

=

Z �

0

0@24 LS
B

350 24 �21 �12�1�2 �13�1�3
�12�1�2 �22 �23�2�3
�13�1�3 �23�2�3 �23

35Z �

s

24 LS
B

35du
1A ds

=

24 �21 � L/L +�12�1�2 � L/S +�13�1�3 � L/B
+�12�1�2 � S/L +�22 � S/S +�23�2�3 � S/B
+�13�1�3 � B/L +�23�2�3 � B/S +�23 � B/B

35
= �21 � L/L+ �22 � S/S+ �12�1�2 � (L/S+ S/L)

+�23 � B/B� �13�1�3 � (L/B+ B/L)
��23�2�3 � (S/B+ B/S) (205)

where L, S, and B are abbreviated notation for the functions [s� u], exp (�� [s� u])
and � [s� u] exp (�� [s� u]) and their [� � s] counterparts in the second integral, and
the combinations are analogous to the individual integrals for the GATSM(2) speci�ed
in appendix C.2.
The components �21�L/L, �22�S/S, �12�1�2 � (L/S+ S/L) are already available for

the AFSNM(2), and the remaining components are calculated as follows. For the B/B
component:

B/B =

Z �

0

� [� � s] exp (�� [� � s])
�Z �

s

� [u� s] exp (�� [u� s]) du
�
ds

=
1

2

�
1

�
[1� exp (���)]� � exp (���)

�2
=

1

2
[G (�; �)� � exp (���)]2

=
1

2
[F (�; �)]2 (206)

where:
F (�; �) = G (�; �)� � exp (���) (207)

For the L/B+B/L component:

L/B+ B/L =

Z �

0

1

�Z �

s

� [u� s] exp (�� [u� s]) du
�
ds

+

Z �

0

� [� � s] exp (�� [� � s])
�Z �

s

1du
�
ds

= �
1� exp (���)

�
� � 2 exp (���)

= �G (�; �)� � 2 exp (���)
= � [G (�; �)� � exp (���)]
= �F (�; �) (208)
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For the S/B+B/S component:

S/B+ B/S =

Z �

0

exp (�� [� � s])
�Z �

s

� [u� s] exp (�� [u� s]) du
�
ds

+

Z �

0

� [� � s] exp (�� [� � s])
�Z �

s

exp (�� [u� s]) du
�
ds

=

�
1� exp (���)

�

�2
� � exp (���) 1� exp (���)

�

= [G (�; �)]2 � � exp (���)G (�; �)
= G (�; �) [G (�; �)� � exp (���)]
= G (�; �)F (�; �) (209)

Therefore, the volatility e¤ect for the AFNSM(3) is:

VE (�) = �21 � � 2 + �22 �
1

2
[G (�; �)]2 + �23 �

1

2
[F (�; �)]2

+�12�1�2 � �G (�; �)� �13�1�3 � �F (�; �)
��23�2�3 �G (�; �)F (�; �) (210)

The square of the annualized option volatility is calculated from the forward rate
factor loadings and the volatility matrix as follows:

[! (�)]2 =

Z �

0

[÷(b0; ~�; s)]
0 �0� [÷(b0; ~�; s)] ds

=

Z �

0

24 LS
B

350 24 �21 �12�1�2 �13�1�3
�12�1�2 �22 �23�2�3
�13�1�3 �23�2�3 �23

3524 LS
B

35 ds
=

Z �

0

�
�21 + �

2
2 � exp (�2�u) + +2�12�1�2 � exp (��u)

�
du (211a)

+

Z �

0

�23 � (�u)
2 exp (�2�u) du (211b)

�
Z �

0

2�13�1�3 � �u exp (��u) du (211c)

�
Z �

0

2�23�2�3 � �u exp (�2�u) du (211d)

The result for equation 211a is already available from appendix C.3, and the re-
maining components for equation 211 are calculated as follows. For 211b:Z �

0

(�u)2 exp (�2�u) du =
1

2

�
G (2�; �)� � exp (�2��)� �� 2 exp (�2��)

�
=

1

2

�
F (2�; �)� �� 2 exp (�2��)

�
(212)

where:
F (2�; �) = G (2�; �)� � exp (�2��) (213)

63



for 211c: Z �

0

�u exp (�2�u) du = G (�; �)� � exp (���)

= F (�; �) (214)

and for 211d: Z �

0

�u exp (��u) du = G (2�; �)� � exp (�2��)

= F (2�; �) (215)

Therefore, the �nal expression for [! (�)]2 in the CAB-AFNSM(3) is:

[! (�)]2 = �21 � � + �22 �G (2�; �) + �23 �
1

2

�
F (2�; �)� �� 2 exp (�2��)

�
+2�12�1�2G (�; �)� 2�13�1�3F (�; �)� �23�2�3F (2�; �) (216)

I Simpli�ed GATSM volatility e¤ect expressions

This appendix is not referenced anywhere in the article, but I have included it to show
that the shadow-GATSM volatility e¤ect calculations for the models in this article
many be simpli�ed considerably, which is an observation that may prove useful for
future CAB-GATSM or GATSM work. Speci�cally, it turns out that the volatility
e¤ects for the models in sections 5.2, 5.3, and 5.4 may all be obtained as the inner
product of a single integral rather than a double integral. That is, de�ning the volatility
e¤ect as:

VE (�) =
1

2
[×(b0; ~�; �)]

0 �0� [×(b0; ~�; �)] (217)

where:

[×(b0; ~�; �)] =
�Z �

0

[÷(b0; ~�; s)]ds
�

(218)

produces the volatility e¤ect expressions for the three shadow-GATSMs speci�ed.
For the shadow-GATSM(2):

[×(b0; ~�; �)]
0 =

�Z �

0

[exp (�~�1s) ; exp (�~�2s)]0 ds
�

= [G (~�1; �) ; G (~�2; �)]
0 (219)

and:

VE (�) =
1

2
[×(b0; ~�; �)]

0 �0� [×(b0; ~�; �)]

=
1

2
[G (~�1; �) ; G (~�2; �)]

�
�21 �12�1�2

�12�1�2 �22

� �
G (~�1; �)
G (~�2; �)

�
= �21 �

1

2
[G (~�1; �)]

2 + �22 �
1

2
[G (~�2; �)]

2 + �12�1�2 �G (~�1; �)G (~�2; �)(220)
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For the shadow-AFNSM(2):

[×(b0; ~�; �)]
0 =

�Z �

0

[1; exp (��s)]0 ds
�

= [� ;G (�; �)]0 (221)

and:

VE (�) =
1

2
[1; G (�; �)]

�
�21 �12�1�2

�12�1�2 �22

� �
1

G (�; �)

�
= �21 �

1

2
� 2 + �22 �

1

2
[G (�; �)]2 + �12�1�2 � �G (�; �) (222)

For the shadow-AFNSM(3):

[×(b0; ~�; �)]
0 =

�Z �

0

[1; exp (��s) ; �s exp (��s)]0 ds
�

=

�
� ;G (�; �) ;

1

�
[1� exp (���)]� � exp (���)

�0
= [� ;G (�; �) ; F (�; �)]0 (223)

and:

VE (�) =
1

2
[1; G (�; �) ; F (�; �)]

�
�21 �12�1�2

�12�1�2 �22

�24 1
G (�; �)
F (�; �)

35
= �21 �

1

2
� 2 + �22 �

1

2
[G (�; �)]2 + �23 �

1

2
[F (�; �)]2

+�12�1�2 � �G (�; �) + �13�1�3 � �F (�; �)
+�23�2�3 �G (�; �)F (�; �) (224)

I conjecture that the result holds generally for all GATSMs, and it should be
straightforward to establish that proof. However, I haven�t yet looked at doing so.
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