LOOKING INWARD FOR TRANSFORMATIVE GROWTH IN CHINA

Rod TYERS
University of Western Australia
Centre for Applied Macroeconomic Analysis (CAMA), ANU
Looking Inward for Transformative Growth in China

Rod TYERS
Business School
University of Western Australia, and
Centre for Applied Macroeconomic Analysis (CAMA)
Research School of Economics
Australian National University

March 2012

Key words:
China, growth, fiscal policy, oligopoly, price caps, privatisation

JEL codes:
D43, D58, E62, L13, L43

* Funding for the research described in this paper is from Australian Research Council Discovery Grant No. DP0557885. It was conducted in part during visits to the China Center for Economic Research (CCER) at Peking University. Special thanks are due to Feng LU and Ling HUANG at Peking University for many constructive conversations on the topic and to Peter Dixon, Yew-Kwang NG, James Giesecke, Yuanfang LI, Miaojie YU, Yongxiang BU and to other participants at lively CCER and CoPS seminars. More recently, valuable comments on the latest draft have been received from Ligang SONG and Warwick McKibbin. Research assistance was provided by Pingkun HSU at the ANU, Liu LIU at the CCER and at the UWA Business School by Ying ZHANG and Tsun Se CHEONG.
Looking Inward for Transformative Growth in China

Abstract
Export led growth has been very effective in modernising China’s economy and establishing a large high-saving middle class. Notwithstanding political opposition from trading partners, this growth strategy has also offered the rest of the world an improved terms of trade and cheaper finance. Yet it is believed by China’s government that this convenient strategy has run its course and the transition has begun to a model that “looks inward” for growth, to be driven by expanding consumption and home investment. This paper uses a numerical model of the Chinese economy with oligopoly behaviour to examine the available “inward” sources of transformative growth along with the policies needed to exploit them. Success will require the redistribution of the considerable rents now accruing to connections of key state owned enterprises, suggesting the potential for political resistance and the yet-avoidable possibility that China could fall into a “middle income trap”.

1 Introduction
There is wide agreement outside China, and more recent concurrence inside, that China’s growth will, and should, be increasingly underpinned by rising home consumption rather than exports. The foreign viewpoint is notwithstanding the considerable contributions of China’s export-led growth to improvements in the foreign terms of trade and to cheaper financing of investment and government spending. The dominant political force behind this view seems to be concern over declining overall economic performance, at least compared with China, comparatively high unemployment and the very visible nature of manufacturing “offshoring”. Yet the global gains conferred by China’s growth are fragile and the Chinese regime that has produced them faces potentially destabilising threats from within and without. For this reason there looms the “middle income trap” widely ascribed to other developing regions (World Bank 2010). The poor performance of trading partner economies clearly weighs on China’s government, as does foreign political hostility to continued export led growth. Internally, there has been a tightening of labour markets, foreshadowing a Lewis “turning point” that would

1 For the foreign, and particularly the American, perspective see Bergsten et al. (2008) and Lardy (2006, 2011, 2012). For the Chinese official line on the “rebalancing” of its economy, including its external accounts, see Wen (2007, 2011) and Yi (2011).

2 Foreign animus toward China’s economic policy regime has been further inflamed by the large current account surpluses of the last decade and the perspective of some in the West that China’s political system denies basic human rights or of others that its large government and defence forces represent a strategic threat. See Tyers (2012).
mark a natural end to export led growth.\(^3\) In addition, there are reasons why increased public investment and the fostering of increased private consumption are of considerable political value at present. The high environmental costs of China’s manufacturing expansion have yet to be fully covered and there is increased income inequality, associated with rents in the state-owned sector that will be politically difficult to unwind.\(^4\) This inequality coincides with socioeconomic stratification in China’s periphery, which has precipitated increased class, ethnic and regional conflicts.

Middle income “slowdowns” in developing countries that have heretofore grown strongly out of poverty are the subject of expanding interest (Easterly 2001; Eichengreen et al. 2011). The focus is the distinction between “natural” slowdown in the convergence process as poorer countries approach full industrialisation, which is due to diminishing returns to physical and human capital and diminished “catch-up” investment incentives (Lucas 2009), and premature stagnation due to powerful vested interests that oppose economic policy reforms needed for the final catch-up phase (Haber et al. 2008; Riedel 2011). The sense in which the slowdown is considered a “trap” derives from a divergence of collective interests from those of the leadership group, with the latter associated with rent extraction (corruption) that peaks at middle levels of real per capita income.

So where are the rents and the vested interests that could retard China’s future growth and does “turning inward” exacerbate the risk of an associate slowdown? The financial sector is one location. Very high saving challenges this sector to allocate efficiently across investment opportunities. The many weaknesses in this process, stemming in part from the protection of state owned financial institutions, have already received considerable attention (Riedel 2007; Walter and Howie 2011). Yet the potential gains from further industrial reform that reduces rents in protected corners of the economy extend well beyond the financial sector to include comparatively protected and state-owned heavy manufacturing and services. Industrial reforms have penetrated these sectors less because of their political sensitivity. If such reforms are required for inward focussed growth then there will be political difficulty achieving it. Yet such reforms offer an effective replacement of export led growth that is also transformative of China’s economic structure and its labour force.

\(^3\) The timing of China’s Lewis turning point is a subject of controversy, as suggested by the contrasts between the views expressed by: Cai (2010), Garnaut (2010) and Golley and Meng (2011), which offer just a sampling of a substantial literature. There is, however, little doubt that the turning point is on its way, even if there is little agreement as to whether recent real wage rises suggest its presence.

\(^4\) For a discussion of the institutional and industrial reform agenda and its difficulty, see for example Tyers and Lu 2008, Riedel 2011 and Deer and Song 2012
Alternative approaches to inward-focussed growth are numerous and they include, importantly, policies and institutional development to support domestic innovation and human capital accumulation. These are the engines of steady state growth, whereas in this paper the focus is on alternatives that follow on from the export led era in that they could further transform the structure of China’s economy. They include expanded government and further industrial reforms, amongst which are pure privatisation, the fragmentation of state-owned enterprises, price cap regulation and foreign direct investment in heavy manufacturing and services. The economic implications of changes of these types are assessed using a mathematical model of the Chinese economy that captures the behaviour of state-owned oligopolies and the impacts of further industrial reform. The greatest potential for inwardly-generated growth is shown to rest, as expected, with further industrial reform in heavy manufacturing and services. The simulation results suggest the best prospects for further growth are to attack rents with tighter price cap regulation and to advance services productivity through FDI. The first of these will be resisted by those currently enjoying the rents and the second presses against the desire on the part of China’s government to protect services from foreign ownership.

The next section reviews the relative merits of export led growth, develops the reasoning behind the choice to turn inward in China’s case and discusses the sources of internally generated transformative growth. In Section 3, the particular structure of China’s economy is reviewed along with the associated sensitivity of its overall performance to its real exchange rate. Section 4 offers a description of the model used and the construction of its database. Section 5 compares inward-sourced growth scenarios and Section 6 concludes.

2. The Turn Away from Export Led Growth

Economic development is primarily about shifting the population from low labour productivity farming to urban employment where the availability of physical capital ensures higher income and more efficient access to essential services. This requires rural-urban migration and, at least initially, basic (mainly primary) education and training. These conditions supply a workforce suitable for light manufacturing. If the protection of property rights and the export infrastructure facilities are sufficient, the availability of adequately trained workers then attracts capital that is supplied from both domestic saving and foreign direct investment (FDI). In the “East Asian model”, much of the migration from rural areas goes into manufacturing,
though some goes to construction and other services, which also expand.5 In a final phase, the transition from middle level to very high real per capita income requires further education and training suited to the growth of sophisticated services.

\textit{The merits of export led growth}

The growth in the local supply of light manufactures that occurs in the early stage in the East Asian model is more than can meet local demand. Comparative advantage in light manufacturing is realised via openness to trade and so the home labour force is transformed by exporting. As it turns out, this transformation is also beneficial to already-industrialised trading partners. This is because the resulting change in the international terms of trade is positive for them – light manufactured imports are cheaper and skill-intensive durable (consumer and capital) goods, which they export, are in higher demand. Moreover, since the opening of such developing economies in this way supplies additional low-skill labour to the integrated global economy, FDI opportunities are abundant and savers in industrialised countries earn higher returns. Idiosyncratically, the East Asian model has also offered high saving households and firms which have supplied excess saving to the global economy. This has financed investment and government expenditures in the industrialised economies in ways that have enhanced their growth.6

\textit{The choice to look inward}

Variations on the East Asian model have been the dominant basis for catch-up by poorer countries and regions for more than a century (Dooley et al. 2004). Then why should the Chinese choose to “look inward” now? The reasons are manyfold. First, it is inevitable that China will cease to depend on labour intensive exports and move its production up the chain of sophistication in the manner of Japan, the Republic of Korea and its regions in Taiwan and Hong Kong before it. This generally coincides with a slowdown in the rate of rural to urban migration and some acceleration in the rate of rise in real wages – the “turning point” of Lewis (1955). The ardent debate over the proximity of this turning point notwithstanding, the most carefully considered evidence suggests it may still be some way off (Cai 2010; Golley and Meng 2011). It is nonetheless true that demographic changes associated with China’s one child policy have accelerated it, and labour costs have indeed grown more sharply in recent years. Even though this pattern of labour force tightening is smooth, the associated transition

5 The Indian model differs from this in that the rural to urban migration goes primarily to services with manufacturing by regulatory and infrastructural constraints. See Bardhan (2010).

6 While it is true that cheaper credit has not always led to growth enhancing expenditures in these countries, their errors in public and private expenditure patterns have not been the fault of the Asian high savers.
to slower growth can be abrupt and destructive, as in the case of Japan in the late 1980s, and so it is possible the Chinese government seeks to ensure a smooth transition.

A second important reason is that growth has slowed in the regions to which China’s exports are directed. This raises the prospect that the terms of trade might shift more rapidly against it if exports continue to be pushed out at the current rate and so a smaller proportion of the benefits from export led growth would accrue to China. Third is political pressure from destination regions against China’s current account surpluses of the past decade, the perceived unfairness of Chinese policy and the loss of trading partner employment in manufacturing. Political attacks on Chinese exports, and anti-Chinese xenophobia in general, are the more likely when the movement of vast numbers of Chinese workers into the modern sector is perceived as being associated with the unemployment of a tenth of workers in Western Europe and the US. This association has high level backing in policy debates, particularly in the US (Bernanke 2006; Krugman 2010).

The Western backlash is essentially mercantilist and much of it is directed at China’s exchange rate. The perception in the US that countries like China use “exchange rate protection”, stems from the role of the US dollar as the reserve currency and the difficulty the US faces when a lack of competitiveness would justify a depreciation against others. In the 1980s, this ire had been directed against Japan, leading to the Plaza Accord and a large and destructive appreciation of the Yen (Goyal and McKinnon 2003; Hamada and Okada 2009), and ultimately to the US Exchange Rates and International Economic Policy Coordination Act of 1988, which formalised the US “defence” against currency manipulators. Poverty, and its associated low wages, are seen in US policy debates as an unfair trade advantage rather than a problem that is solved by expanded trade. The fact that the underlying real exchange rate of China against the US has appreciated substantially since 2004 and continues to appreciate seems to have been missed in the American literature (Tyers and Zhang 2011).

Finally, China is constantly criticised for its lack of political rights and for its treatment of unhappy minorities such as the Tibetans and the Hui zu. This criticism is sometimes justified but often it stems from fear of China as a potential strategic opponent and a sense that the advocacy of additional political and religious rights might weaken it in such a competition. These external criticisms of the Chinese state and its policies, while occasionally well

7 The literature on Japan’s stagnation since the late 1980s is vast. See Hayashi and Prescott (2002) and Tyers (2011).
8 This raises the prospect of “immiserizing growth”, which is already hotly debated as a consequence of Chinese export expansion, at least for smaller, poorer exporters that compete with China (Bhagwati 1987).
intentioned, are too often xenophobic and made in ignorance or disregard of the considerable benefits of Chinese growth for the West. Within China, however, inequality has become a major political issue and the “turn inward”, via expanded public investment, has also been justified as a means of redirecting the fruits of growth to lagging regions and to the rural sector in general (Wen 2011).

Inward sources of growth

Potential inward contributions to growth are numerous and they include improved policy implementation in the areas of innovation and human capital growth (Robertson 2011) as well as in the urbanisation of migrant workers (Song et al. 2010). In what follows the focus is on some particular sources of growth that are natural successors to export-led growth in that they could further transform the structure of China’s economy.

Given the apparent success of China’s surge in public investment during the global recession in 2008-9 the government is surely tempted to think of expanded government activity as an inward source of future growth. And it is common for governments of developing countries to undersupply public goods that are foundations for growth. In China’s case these include the facilities and regulatory institutions to support basic and higher education, transport and telecommunications infrastructure, retirement insurance, health insurance and environmental protection. Compared with other developing countries, China is in the fortunate situation of having implemented a sensible tax law in 1994 that is accessing an increasing share of all its economic activity. This means that central government tax revenue is rising faster than GDP and it was this that allowed the substantial increase in public investment in 2009 without a large increase in the fiscal deficit (Jia and Liu 2009). So a rise in government activity will clearly continue to contribute to China’s GDP. It is unclear, however, to what extent if any this expanded government activity will foster sustainable productivity growth.

An important and yet untapped source of further growth is in the extension of industrial reforms to heavy manufacturing and services. State owned firms in these sectors have been relatively protected and significant foreign ownership shares have been prevented. One consequence of this is that these firms, supplying as they do essential materials and services to an economy that is expanding rapidly, courtesy of the more competitive light manufacturing export sector, have been extremely profitable (Lu et al. 2008). At the same time these firms have returned little in the way of dividends to the central government and so their profits have not been distributed to their public owners. Instead, these profits have been reinvested. Consequently, the decision to save or consume from this component of national income has
been denied households, contributing substantially to China’s extraordinary saving, amounting to more than half its GDP.⁹

Substantial potential future growth lies in the redistribution of these rents, which would make Chinese intermediate products cheaper and foster overall output growth while at the same time raise private consumption. A number of approaches are possible, some of which are already being tried.

1) Pure privatisation: this would return the profits of SOEs to private households and foster consumption, raising domestic demand for China’s goods and services,

2) SOE fragmentation: this would force more competition between firms and thus reduce mark-ups, and

3) Tighter regulation of SOE pricing: this could, at least in theory, force firms to price at their average costs, eliminating rents altogether and reducing the price level.

These alternatives are examined in the analysis to be discussed in subsequent sections.

3. China’s Structure, Performance and its Real Exchange Rate

The implications of a turn inward ride rather importantly on consequent changes in China’s underlying real exchange rate, or its level of global competitiveness. This special sensitivity stems from its economic structure, as summarised in Table 1. Four patterns stand out:

1) the great majority of non-agricultural employment is in the export-oriented light manufacturing sector – indeed, employment in this sector exceeds that in agriculture,

2) the light manufacturing sector dominates China’s exports,

3) light manufacturing is relatively competitive – price mark-ups are low and so pure or economic profits make up only a small share of total revenue, and

4) the SOE-dominated energy, metals and services sectors are less labour-intensive and at the same time they are oligopolistic, generating substantial rents.

Since exporting firms are highly competitive, generate little pure profit and carry most of the new or “modern sector” employment, future employment performance is very sensitive to the relativities between home wages and export prices, and hence to China’s real exchange rate.

⁹ The contribution of corporate saving to China’s overall saving rate and to the current account surpluses of the past decade is examined by Kuijs (2006), Kuijs and He (2007) and Tyers and Lu (2008).
Yet the inward-looking policy changes that could contribute most to enlarging China’s economy all have implications for the real exchange rate. Consider, first, the case of government expansion. There are several mechanisms by which expanded government expenditure tends to appreciate the real exchange rate.

The Mundell-Fleming effect

When financial capital is internationally mobile, even if imperfectly, increased government borrowing raises home yields and induces financial inflow (Fleming 1962, Mundell 1963). The net effect is to raise demand for home relative to (more elastically supplied) foreign products and services and hence to appreciate the real exchange rate.

The non-traded good demand effect

This recognises that governments concentrate their spending on non-traded services and so their expansion changes the composition of aggregate demand toward more inelastically supplied home products, driving up their relative price and hence the real exchange rate. This effect is illustrated in Figure 1, which is based on the abstraction that goods and services are starkly divided according to their tradability. If the share of government spending in aggregate demand rises, then the pattern of implied preferences shifts favouring non-traded goods, appreciating the real exchange rate.

The oligopoly rent effect

Increased government spending raises home demand for home products, reducing the exported share of the average firm’s output. Because foreign demand is the most elastic, this reduces the elasticity of demand faced by oligopoly firms, which then raise their mark-ups. And since these firms reside mainly in the protected heavy manufacturing and largely non-traded services sectors, such price rises appreciate the real exchange rate by raising the relative prices of non-traded services and by increasing costs faced by the competitive export sector (Tyers and Lu 2008). A way of thinking of this is that the excess profits are achieved by supplying less output and so the oligopoly firms reduce productivity in the largely non-traded sectors of the economy. Again employing the abstraction that goods and services are either tradable or not, the effect of this productivity contraction on relative prices is illustrated in Figure 2. It raises the prices of non-traded goods relative to traded goods and hence China’s real exchange rate.

10 De Gregorio et al. (1994) and Froot and Rogoff (1995), and more recently Galstyan and Land (2009), recognise that boosting government expenditure appreciates the real exchange rate by this mechanism, even in the case of public investment, at least in the short run.
In assessing fiscal expansions, the negative effect on the real exchange rate is commonly seen as being more than offset by the resulting expansion in aggregate demand. A key mechanism for this is that the increase in government dissaving reduces the national saving rate, at least temporarily, requiring the failure of Ricardian equivalence. Because reduced national saving contracts the leakage of expenditure abroad, which in China takes the form of foreign reserve accumulation, the current account surplus is reduced and more Chinese expenditure falls on the home relative to the foreign economy. This has the effect of either inducing a home inflation or arresting a deflation, thus stabilising the relationship between nominal wages and the price level and hence maintaining the steady state level of employment. Just such a short run approach to government spending in China is taken by Tyers and Huang (2009). The expansion of government to be considered here long run in orientation and therefore tax financed.

Returning to the oligopoly pricing effect on the real exchange rate, the alternative of further industrial reform is also considered here. To the extent that this reduces oligopoly mark-ups it will also tend to depreciate the real exchange rate and thereby preserve the competitiveness of China’s export manufacturing sector. The further alternative of FDI in Chinese services offers increased services productivity. This also would depreciate the real exchange rate by reducing the relative price of non-traded products. To quantify the effects of these changes on the real exchange rate and on China’s overall economic performance, a complete model of the Chinese economy is offered.

4. An Oligopoly Model of the Chinese Economy

To capture the behaviour of the oligopolistic SOEs, a comparative static macroeconomic model of the Chinese economy is used that embodies a multi-industry structure in which all industries are treated as oligopolies, with firms in each industry supplying differentiated products and interacting on prices.11 Government expenditure creates demands for goods and services via nested constant elasticity of substitution (CES) preferences and government revenue stems from a tax system that includes both direct (income) taxes levied separately on labour and capital income and indirect taxes including those on consumption, imports and exports.12 A capital goods sector is included which translates investment expenditure into product and

11 It is a distant descendant of that by Harris (1984), Gunasekera and Tyers (1990), though it is considerably generalised to include macroeconomic behaviour.

12 Income taxes are approximated by flat rates deduced as the quotient of revenue and the tax base in each case.
service demands, again using a nested CES preference structure. The level of total investment expenditure has Q-like behaviour, being influenced positively by home rates of return on installed capital and negatively by a financing rate obtainable from an open “bond market” in which home and foreign bonds are differentiated to represent China’s capital controls. Savings are sourced from the collective household at a constant rate and from corporations at industry-specific rates applying to the magnitudes of pure (economic) profits earned. Foreign direct investment and official foreign reserve accumulation are both represented, to complete China’s external financial accounts.\(^\text{13}\)

Model structure

The scope of the model is detailed in Table 2. Firms in all industries are oligopolistic in their product pricing behaviour with the degree of price-setting collusion between them represented by conjectural variations parameters that are set to account for the degree of regulatory surveillance. Each firm bears fixed capital and labour costs, enabling the representation of unrealised economies of scale. Home products in each industry are differentiated by variety and output is Cobb-Douglas in variable factors and intermediate inputs. While firms are oligopolists in their product markets they have no oligopsony power as purchasers of primary factors or intermediate inputs.\(^\text{14}\) The economy modelled is “almost small”, implying that it has no power to influence border prices of its imports but its exports are differentiated from competing products abroad and hence face finite-elastic demand.\(^\text{15}\) The consumer price index is constructed as a composite Cobb-Douglas-CES index of post-consumption-tax home product and post-tariff import prices, derived from the aggregate household’s expenditure function. This formulation of the CPI aids in the analysis of welfare impacts. Because collective utility is also defined as a Cobb-Douglas combination of the volumes of consumption by generic product, proportional changes in overall economic welfare correspond with those in real GNP.\(^\text{16}\)

\(^{13}\) Hereafter the capital, financial and official sub-accounts of China’s balance of payments will be referred to as the “capital account”.

\(^{14}\) Imports in each industrial category are seen as homogeneous, differentiated from home products as a group, so that import varietal diversity never changes. Since all home varieties are exported there is no movement on the “extensive margin” of the type that is evident in the models of non-homogeneous export industries by Melitz(2003) and Balistrieri et al. (2007).

\(^{15}\) The effective numeraire is the import product bundle. Consumer and GDP price indices are constructed for real aggregations, following the practice in national modelling since Dixon et al. (1982) and Harris (1984).

\(^{16}\) When the utility function is Cobb-Douglas in consumption volumes, the expenditure function is Cobb-Douglas in prices. If the consumer price level, \(P^c\), is defined as a Cobb-Douglas index of prices, the equivalent variation in income can be expressed in terms of the proportional change in this index. Thus, following any shock, the income equivalent of the resulting changes to income and prices is:
The quantity of domestically-owned physical capital is fixed both in the short and long runs, so that changes in the total capital stock affect the foreign ownership share and hence the level of income repatriated abroad. In the experiments to be presented a long run closure is used throughout. Physical capital is homogeneous and fully mobile between industries, though claims on home and foreign capital are differentiated and so there is a wedge between the home and domestic rates of return that stems the differentiation of these financial assets (due, say, to the retention of inward and outward capital controls) combined with endogenous reserve management policy. All real unit factor rewards are flexible and domestic factor supplies fixed. A fixed oligopoly structure is retained, assuming SOEs are protected from competitive entry and are prevented from exiting if losses are incurred. Consistent with China’s heretofore fiscal conservatism, the base fiscal deficit is held constant with expenditure changes covered by changes in tax rates.

Macroeconomic behaviour

As befits a comparative static analysis, the macroeconomics embodied is elemental. Central is the open economy capital market which is built around the market clearing identity:

\[I^{\text{exp}}(r^c, r) = S_D(Y_{DH}, \pi, G) + S_{NF}(r, r^*) - \Delta R(r, r^*) , \]

where \(r \) is the home real financing rate (bond yield), \(r^* \) is the real yield on bonds abroad (the two being differentiated and so offering different yields). Total domestic saving is

\[S_D = S_H(Y_{DH}) + S_C(\pi) + (T - G) , \]

where \(S_H \) is saving from home household disposable income. The household saving rate is assumed fixed, so that \(S_H = s_H Y_{DH} \). Following Tyers and Lu (2008), China’s extraordinarily high level of corporate saving, \(S_C \), is assumed to stem from pure profits, \(\pi \), with a distinct but fixed saving rate assumed for each industry:

\[S_C = \sum_i S_{Gi} = \sum_i s_{Gi} \pi_i . \]

\[\Delta W = Y_i - Y_0 + EV\left(\frac{P^C_i}{P^C_i}, Y_i \right) = Y_i - Y_0 - Y_i \frac{\Delta P^C_i}{P^C_i} , \]

which can be expressed in proportional change form as:

\[\frac{\Delta W}{W} = \frac{Y_i \left(1 - \frac{\Delta P^C_i}{P^C_i}\right) - Y_0}{Y_0} \approx \frac{\Delta Y}{Y_0} - \frac{\Delta P^C_i}{P^C_i} . \]

This is, approximately, the proportional change in real GNP.

17 This contrasts with the results presented by Tyers and Huang (2009), which are short run in nature.
The last two terms of (10) represent net private and public flows on the capital account. S_{NF} is the inflow of private foreign saving to finance investment in China net of Chinese private saving going abroad and ΔR is the annual addition to official foreign reserves. r^c is the average net rate of return on installed capital, which takes the following form at the industry level:

$$r^c = \frac{P_Y^c MP^k}{P^k} - \delta,$$

where P^k is the price of capital goods, P_Y^c is the product price and δ is the rate of depreciation. An average of these rates is taken that is weighted by value added in each industry to obtain r^c. Investment expenditure then is determined by:

$$I^{exp} = P^k I_0 \left(\frac{r^c}{r} \right)^{\epsilon_r}.$$

This relationship constrains the investment response to a change in either the rate of return or the financing rate, offering a reduced form representation of either gestation costs or expectations over short run consequences of installation for the rate of return.

Because in China’s case capital controls have been tight and inflows mainly take the form of state-approved FDI, this comparative static analysis assumes net foreign saving, S_{NF}, is motivated by the difference between the home and foreign bond yield. A linear relationship is used to allow for reversals of the direction of net flow in response to shocks.

$$S_{NF} = a_{SF} + b_{SF} (r - r^*) .$$

The tight capital controls necessitate a low level of responsiveness and so b_{SF} is small (the supply of net foreign private saving is inelastic). Correspondingly, the combination of China’s high saving rate with outward capital controls necessitates that the surplus of saving over investment, which has amounted to a tenth of GDP in some years, be directed abroad by the PBC as official foreign reserves. This behaviour depends on a relationship that is linear, for the same reason as in (14):

$$\Delta R = a_{DR} - b_{DR} (r - r^*),$$

where the movement of reserves is much more elastic to the home real interest rate than that of private financial capital, so that $b_{DR} \gg b_{SF}$. The effect of this is to stabilise the home real rate.
in response to shocks, which cause, instead, elastic movements in the rate of reserve accumulation.\footnote{It is argued elsewhere (Tyers and Zhang 2011, for example) that, given the commitment to outward capital controls and the high saving rate, the PBC has little residual discretion over annual increments to reserves. This is because the PBC must print home currency to exchange with the commercial banks in return for unwanted foreign currency. Yet, by soaking up domestic saving through the issue of “sterilisation bonds” the PBC’s reserve accumulation has the effect of preventing downward pressure on that rate. Equation (14) is intended merely as a reduced form description of this process.}

The capital market clearing identity (10) then determines the home real interest rate and the magnitude of the capital account deficit (\(\Delta R - S_{NF} = S_D - I\)). This is then equal in magnitude to the current account surplus [\(X - M + N(r, r^*)\), where \(N\) is net factor income from abroad\footnote{As modelled, \(N\) comprises a fixed net private inflow of income from assets abroad and fixed aid to the government, less endogenous repatriated earnings from foreign-owned physical capital in China.}]. Shocks originating in the determinants of domestic saving and investment, and hence in external flows, cause home (relative to foreign) product prices (and hence the real exchange rate) to adjust sufficiently to clear home markets and preserve the balance of payments.

Oligopoly in supply

Firms in each industry supply differentiated products. They carry product-variety-specific fixed costs and interact on prices. Cobb-Douglas production drives variable costs so that average variable costs are constant if factor and intermediate product prices do not change but average total cost declines with output. Firms charge a mark-up over average variable cost which they choose strategically. Their capacity to push their price beyond their average variable costs without being undercut by existing competitors then determines the level of any pure profits and, in the long run, the potential for entry by new firms.

Thus, each firm in industry \(i\) is regarded as producing a unique variety of its product and it faces a downward-sloping demand curve with elasticity \(\varepsilon_i\) (< 0). The optimal mark-up is then:

\[
\begin{align*}
(16) \quad m_i &= \frac{p_i}{\nu_i} = \frac{1}{1 + \frac{1}{\varepsilon_i}} \quad \forall i,
\end{align*}
\]

where \(p_i\) is the firm’s product price, \(\nu_i\) is its average variable cost and \(\varepsilon_i\) is the elasticity of demand it faces. Firms choose their optimal price by taking account of the price-setting behaviour of other firms. A conjectural variations parameter in industry \(i\) is then defined as the influence of any individual firm \(k\), on the price of firm \(j\):
\[\mu_i = \frac{\partial p_y}{\partial p_{yk}} . \]

These parameters are exogenous, reflecting industry-specific free-rider behaviour and the power of price surveillance by regulatory agencies. The Nash equilibrium case is a non-collusive differentiated Bertrand oligopoly in which each firm chooses its price, taking the prices of all other firms as given. In this case the conjectural variations parameter (17) is zero. When firms behave as a perfect cartel, it has the value unity. This parameter enters the analysis through the varietal demand elasticity.

Critical to the implications of imperfect competition in the model is that the product of each industry has exposure to five different sources of demand. The elasticity of demand faced by firms in industry \(i \), \(\varepsilon_i \), is therefore dependent on the elasticities of demand in these five markets, as well as the shares of the home product in each. They are final demand \((F) \), investment demand \((I) \), intermediate demand \((I) \), export demand \((X) \) and government demand \((G) \). For industry \(i \), the elasticity that applies to (19), above, is a composite of the elasticities of all five sources of demand.\(^{20}\)

\[\varepsilon_i = s_i^F \varepsilon_i^F + s_i^I \varepsilon_i^I + s_i^X \varepsilon_i^X + s_i^G \varepsilon_i^G \quad \forall i \]

where \(s_i^j \) denotes the volume share of the home product in market \(i \) for each source of demand \(j \). These share parameters are fully endogenous in the model.

Thus, the strategic behaviour of firms, and hence the economic cost of oligopolies, is affected by collusive behaviour on the one hand and the composition of the demands faced by firms on the other, both of which act through the average elasticity of varietal demand. The collusive behaviour enters through conjectural variations parameters and composition through the demand shares \(s_i^j \). Of course, the capacity firms have to reduce their prices also depends on their productivity performance, which we do not examine in this paper, and on the fixed cost burden carried by each industry and hence on firm numbers.

To study the effects of price-cap regulation a Ramsey mark-up, \(m_i^R \) is formulated as:

\[m_i^R = \frac{aF_i + V_i}{V_i} . \]

\(^{20}\) The expressions for these elasticities are messy and voluminous. They are derived in appendices to Tyers and Lu (2008).
Compromise mark-ups can be simulated by altering the parameter φ_i in an equation for the “chosen” mark-up:

$$m_i^C = (\varphi_i - 1)m_i^R + (2 - \varphi_i)m_i \quad \forall i.$$

Thus, when $\varphi_i = 1$, $m_i^C = m_i^R$, and when $\varphi_i = 2$, $m_i^C = m_i^R$.

The database and its representation of broad economic structure

The flow data for the current model originates from the GTAP Version 6 global database for 2001.21 It combines detailed bilateral trade, transport and protection data characterizing economic linkages among regions, together with individual country national accounts, government accounts, balance of payments data and input-output tables which enable the quantification of inter-sectoral flows within and between regions. Factor shares and input output coefficients from these 2001 data are combined with Chinese national accounts and balance of payments data for 2005, inflating the database to that year and readjusting it for balance. Key structural elements are evident from Table 1, which shows that China’s measured GDP is dominated by light manufacturing and services. The major contributors to exports are also those that export the largest shares of their output. Table 3 confirms that the traded industries in general and the exporting light manufacturing industries in particular are intensive in production labour. This is most notably true of processed agricultural products and textiles.

Calibration of pure profits and oligopoly parameters

The flows represented in the database do not reveal details of intra-sectoral industrial structure. To represent oligopolistic behaviour, additional information is required on effective firm numbers, pure profits, fixed costs and minimum efficient scale for each industry. With the support of China’s official statistics these variables are calibrated in the following manner. First, pure profits are required as a share of total revenue in each industry. This is needed to finalise the flow database by splitting capital payments between market and over-market returns.22 It is also a starting point for calibrating industry competitive structure. Second, rough estimates are required of strategically interacting firm numbers in each industry and their

21 Documentation on the GTAP 6 Data Package may be viewed at: <http://www.gtap.agecon.purdue.edu/databases/>.

22 Pure profit shares of total revenue in 2005 were high in “metals and minerals”, “petroleum and energy”, “telecommunications”, “insurance and finance” and “transport”. Data on accounting profits in the latter three sectors is comparatively weak and the estimates are partly judgemental, accounting for such determinants as low borrowing rates for these SOE dominated sectors and hence low capital service costs. See the appendices to Tyers and Lu (2008).
corresponding conjectural variations parameters. Again, official statistics provide firm numbers and sizes and the proportion that are private and state-owned.

Third, to complete the formulation of industry demand elasticities, values of elasticities of substitution between home product varieties on the one hand, and between generic home and foreign products on the other, are required for each industry. These are initially drawn from the estimation literature. Preliminary industry demand elasticities are then calculated for each source of demand (final, intermediate, investment, government and export). Initial shares of the demand facing each industry are then drawn from the database to enable the calculation of weighted average demand elasticities for each industry. Preliminary mark-up ratios are deduced from these, via (16). The initial equilibrium industry shares, elasticities and mark-up ratios for each industry are given in Table 4. This completes the initial demand side calibration. Work on the supply side begins with the application of mark-up ratios to deduce the initial level of average variable cost in each industry. Then the proportion of pure profits in total revenue is deducted from the mark-up to arrive at fixed cost revenue shares. Total recurrent fixed cost in each industry then follows. At this point these results are reviewed and, where conflicting information is available on fixed cost shares of total turnover, the calibration is recommenced with new initial elasticities.

Importantly for the interpretation of later results, Table 4 also makes clear that the five sources of demand facing firms in each industry are not equally elastic. Export and final demand are the most elastic and intermediate demand the least.

23 Effective firm numbers are smaller than totals since pricing is frequently dominated by a few large firms in each sector. For oligopolistic sectors in China, these tend to be state owned enterprises. See Tyers and Lu (2008).

24 Summaries of this literature are offered by Dimaranan and McDougall (2002) and at http://www.gtap.purdue.edu/databases/.

25 Note that the reason the elasticities appear large in magnitude at first glance is that they do not represent the slopes of industry demand curves for generic goods. Rather, they are the elasticities faced by suppliers of individual varieties and are made larger by inter-varietal substitution.

26 Fixed costs take the form of both physical and human capital costs using the rule of thumb (based on estimates by Harris and Cox, 1983) that physical capital has a fixed cost share of 5/6.

27 The actual calibration process is yet more complex than this because the elasticities of intermediate demand depend on intermediate cost shares, which depend on the variable cost share. It is therefore necessary to calibrate iteratively for consistency of elasticities and shares.

28 Export demand is found to be more elastic because of the larger number of substitutable product varieties available abroad while intermediate demand is relatively inelastic because of firms’ reluctance to alter arrangements for intermediate input supply which may depend on location or “just in time” relationships.
5. Comparing Alternative Regimes

To quantify the “natural” slowdown story, the simulations commence with representations of continuing export led growth and the Lewis turning point. Government expansion is then considered, first financed by a rise in consumption taxation and then financed by a rise in corporate taxation. Turning to industrial reform, three types are considered. First, a pure privatisation is simulated by allowing all profits of SOEs to accrue as income to the collective private household. Second, a threefold fragmentation of SOEs is tried in order to elicit more competitive pricing, and third, price cap regulation is imposed to force mark-ups half way to the level sufficient to cover average costs. Finally, the option of opening the services sector to additional FDI is considered and hence of fostering accelerated productivity growth in that sector. It is worth noting that, except for the last, all these scenarios ignore natural innovation and productivity improvements that would continue irrespective of the fiscal or industrial policy regime. As such, these simulations consider policy changes that could offer the major boost to China’s GDP that might replace that yielded by export led growth.

Further export led growth

Continued export led growth is illustrated in this simulation by some representative shocks to productivity and a closure that allows rising labour supply. There is a rise in labour productivity in agriculture, to represent its capacity to continue shedding workers, and a rise in total factor productivity in the light manufacturing export sector, to represent the effects of continued FDI into that sector. There is also an arbitrarily low increase in the real production wage, which is made exogenous for this simulation so that the supply of workers to the modern sector can grow. Workers continue to be released by agriculture, foreign capital flows in and expansion is substantial as expected. The results are shown in the first column of Table 5.29

Lewis turning point

Here the same shocks are applied, except that there is no productivity gain in agriculture associated with departing workers and the closure is changed so that the supply of production labour is fixed and the real production wage is endogenous. The results are shown in the second column of Table 5. In this case surplus workers are no longer available so that growth

29 Real net income to home capital owners actually falls slightly. This is because total saving continues to increase under this scenario and capital controls are retained. This excess supply of saving is transferred to foreign reserves only incompletely, leaving a decline in the home bond yield.
then stems from the productivity changes alone and is much reduced. The real production wage rises faster, however, and there is a reduction in the current account surplus due to a decline in pure profits in the protected sectors (in effect, a gain by workers at the expense of capital) and hence a decline in corporate saving. The current account balances because of the saving change and there is a “natural” redistribution of the SOE rents in favour of working households. If the government can maintain a steady policy hand during this shock, while growth will clearly slow, many of the other structural issues with the Chinese economy are corrected.

Consumption tax financed government expansion

In the long run an expansion of government activity must be tax financed. Here the instrument of choice is the consumption tax. The experiment is an arbitrary increase in the government share of GDP by 25 per cent. It requires an increase in consumption tax revenue by 14 per cent of the tax base. This is a large negative shock that contracts real domestic factor income at new home prices. The results, shown in the third column of Table 5, confirm that home workers and home owned capital are losers and so real GNP contracts. Real GDP rises slightly, however. This is due to the retention of considerable foreign capital, the income from which is not subject to the consumption tax and the fact that the real rate of return on capital rises in terms of foreign prices on the back of reduced real labour costs. The protected heavy manufacturing and services sectors expand in this scenario while private households and workers are worse off.

Corporate tax financed government expansion

If the government expansion is financed from company, or capital income, tax the net effects are as shown in the final column of Table 5. The tax needed to expand the government share of GDP by 30 per cent turns out to be 7.7 per cent of the capital income tax base. Because corporate saving depends on profits it declines, also contracting the current account surplus. Apart from a substantial cut in real income to home capital owners, this policy has little effect on overall real economic activity. Enlarging government, at least via tax increases, therefore offers little real long run expansion under the assumptions of this model. A key to this is the turning inward of demand under the government expansion scenarios which reduces the export share of production and therefore the elasticity of demand facing oligopoly firms. The result is

30 A separate experiment to measure the effects of a similar expansion that is bond financed finds results that are contractionary of both GDP and GNP in real terms. This result is examined in short run mode by Tyers and Huang (2009), who find that the usual Keynesian expansion is more than offset by oligopoly price increases and the associated real appreciation.
a modest but influential real appreciation in each case that is larger than would arise were there to be no oligopoly behaviour.

Pure privatisation

The first shock simply places the majority of SOE assets in private hands so that profits are distributed to households. The rates of corporate saving across industries are reduced until total corporate saving falls to a more normal five per cent of GDP.\(^31\) Most after-tax company income then accrues to households and so can be allocated by them to saving or consumption.\(^32\) By itself, as indicated in the first column of Table 6, this reduces national saving and the current account surplus. Other than this, however, the simulation suggests that privatisation generates no substantial growth in and of itself so long as the competition facing SOEs is restricted.\(^33\)

Fragmentation of SOEs

Here SOEs are subdivided within sectors and encouraged to compete on price. This has been a popular approach in some protected sectors, yet the simulation suggests the results are not attractive. A threefold increase in the number of oligopoly firms is imposed in the heavy manufacturing and services sectors the effect of which are shown in the second column of Table 6. The problem with this approach is that, while it does induce more competitive pricing and hence lower mark-ups, each new firm carries fixed costs and so the sectoral fixed cost burden rises sufficiently for prices to rise, lower mark-ups notwithstanding. Because fixed capital is required, the capital stock increases substantially but capital returns are slashed. While production workers gain, domestic capital owners lose and no substantial growth is yielded.

Tighter price cap regulation of SOEs

The results for tighter price caps on SOEs are more positive. Indeed, they suggest that substantial new growth is available from this policy option. In oligopoly industries with fixed costs mark-ups over average variable cost are required to break even. In the simulation, price caps are imposed that would force firms to reduce their mark-ups half way toward the level that would cover average costs. Such price cap regulation appears to have been successful in many

\(^31\) This is the scale of corporate saving in Taiwan. See Tyers and Lu (2008).

\(^32\) It is achieved by shocking down the corporate saving rate (retained earnings rate) so that discretionary corporate income accrues to households.

\(^33\) Had it been assumed that privatization might eliminate x-inefficiency and hence raise productivity by making poor performing firms take-over targets, a one-off growth surge might be expected from this change.
industrial countries and the simulation suggests that the effect in China would be to reduce costs in industries whose products are used as intermediate inputs throughout the economy and hence economic activity would be expanded substantially. As indicated in the third column of Table 6, the lower costs help depreciate the real exchange rate, aiding the export sector and, aside from the overall expansion it offers, it unwinds much of the income inequality of recent decades by redistributing rents and raising wages.

FDI induced productivity growth in services

The final simulation considers the effect of a productivity improvement in services of the type that could be delivered by additional foreign investment. The results are indicated in the final column of Table 6. The more efficient services sector depreciates the real exchange rate boosting rather than impairing exports and fostering overall growth. The Balassa-Samuelson Hypothesis notwithstanding, there is also structural convergence of the Chinese economy with the industrialised West. The simulation yields substantially higher real wages that benefit both skilled and production workers. These represent higher costs, however, and so they cause a redistribution of industrial output and exports in favour of heavier manufacturing. The Chinese economy continues to open but it is much more reliant than before on intra-industry trade with the West, in the manner of the US and Western Europe.

The difficult politics of internally generated growth

While the results obtained here are dependent on some strong assumptions underlying the modelling, they are clear in suggesting that, for substantial further growth to be found from looking inward, China will need to combine other elements of industrial reform with a more ardent regulatory attack on oligopoly rents. This will be difficult politically, as will the other key element of further growth, namely substantial productivity growth in the primarily state-owned services sector. Achieving this will require levels of FDI in services that parallel those in Chinese manufacturing. Heretofore, the government has opposed foreign ownership in key services and heavy manufacturing industries so allowing such FDI will also be very difficult politically.

34 One such assumption is that the private household saving rate from disposable income remains constant. Those policy changes that substantially increase household disposable income, such as privatisation, could see a change in this rate, though it is not clear in which direction. A permanent income story might suggest a rise but the focus here is on the long run steady state and in that case it is possible that households expecting a continuation of higher incomes might choose a lower rate. A fully dynamic approach, along the lines of McKibbin and Woo (2004), would help address this, though even then, the results would rely on much debated assumptions about the formation of household expectations and it is unlikely that the direction or the relative scale of the projected changes in overall performance would be altered.
6. Conclusion

With the impending end to export led growth and conflicts due on the one hand to rising domestic inequality and, on the other, to recently high current account surpluses, China is in need of a further stage of transformative growth that will maintain the pace of its catch-up and address its internal and external conflicts. One inevitable transformation to come stems from the Lewis turning point. Its arrival will see accelerated real wage growth and hence the fruits of further growth will be less concentrated and, since this will raise the share of total income available to households, the corporate share of saving should fall. This, in turn should reduce the overall saving rate and the current account surplus. It will, of course, bring with it the need for costly adjustments since, as shown in the previous section, growth will slow and the supply of new labour to the heretofore efficient and relatively competitive light manufacturing sector will gradually dry up. Moreover, the net benefits from China’s growth that accrue to the global economy will also decline. Yet if, as some believe (Garnaut 2010), this transition is imminent, the silver lining it brings will be reduced political pressure from at home and abroad and hence less incentive to abandon the heretofore successful market oriented policy regime.

But there remains the matter of sustaining the overall growth rate and that of an orderly transition. As to the latter, both the Republic of Korea and Taiwan made orderly economic transitions away from dependence on the transformation of their labour forces via labour intensive exports. Political transformations toward liberal democracy also occurred in both, commencing as their urban middle classes assumed numerical majorities. Of course, they were helped in this by the stimulus associated with China’s own growth surge. Japan’s initial transition was orderly, surviving the oil and commodity crises of the 1970s, but it was subsequently disrupted by policy errors during the 1980s and early 1990s. Japan’s comparatively liberal democracy could not chart those waters effectively even with the growth of China on its doorstep. Now China must do so, but without the external stimulus associated with a growth surge in a large near neighbour.

As for moderating the growth slowdown, a further source of transformative growth is required to avoid a rapid and possibly disruptive slowdown. This issue is here addressed via simulations of a 17 sector model of the Chinese economy that takes explicit account of oligopoly behaviour of SOEs and a database that captures essential economic structure, namely a largely competitive light manufacturing export sector and oligopolistic heavy manufacturing
and services dominated by SOEs. The results suggest that further transformative sources of
growth do exist but, to exploit them, China’s government must dig deep and produce industrial
reforms that reduce the rents that currently concentrate economic gains while at the same time
welcoming FDI into its hitherto protected service industries. The benefits available are
considerable, not only including final steps toward real per capita income convergence with the
West but also reduced inequality and stronger more externally engaged heavy industry and
services.

While delivering this will be a tall order politically, China’s governments since the early 1980s
have faced constant political and economic challenges and they have thus far been effective.
The fundamentals behind Chinese growth to date seem sound and the obstacles to continued
transformation are known to the government and its branches (Economist 2011). The
continuing external clamour for greater consumption is essentially xenophobic - tantamount to
demands that the Chinese should invest less and have their economy perform more poorly. A
strong Chinese economy and a smooth economic transition is in the global collective interest
and it will require that Western political pressure is restrained. At the same time, the Chinese
are in a better position to learn from the Japanese experience and resist external pressure for
economic policy changes that are not beneficial domestically.

References
of international trademodels with heterogeneous firms”, presented at the 10 Annual
Conference on Global Economic Analysis, Purdue University, July.

and India, New Jersey: Princeton University Press.

Bergsten, C.F., C. Freeman, N.R. Lardy and D.J. Mitchell (2008), China’s Rise: Challenges
and Opportunities, Washington DC: Peterson Institute for International Economics.

Bernanke, B. (2006), Speech to the Chinese Academy of Social Sciences, Beijing, Friday 15

Figure 1: Expenditure Composition and the Real Exchange Rate
Figure 2: Service Oligopoly Rents and the Real Exchange Rate
Table 1: Structure of the Chinese Economy, ca 2005a

<table>
<thead>
<tr>
<th>Per cent</th>
<th>Value added share of GDP</th>
<th>Share of total production employment</th>
<th>Share of total exports</th>
<th>Pure profit share of gross revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>13</td>
<td>24</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Petroleum, coal, metals</td>
<td>16</td>
<td>11</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Light manufacturing</td>
<td>29</td>
<td>33</td>
<td>82</td>
<td>5</td>
</tr>
<tr>
<td>Services</td>
<td>42</td>
<td>32</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>12</td>
</tr>
</tbody>
</table>

*a Pure profits are calculated from national statistics estimates of accounting profits, deducting required returns to service industry specific prime rates. Here they are presented gross of tax and corporate saving and as shares of total revenue.

Source: Model database, derived from Dimaranan and McDougall (2002), and an updating of the national data to 2005.

Table 2: Model Scope

<table>
<thead>
<tr>
<th>Regions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>China</td>
</tr>
<tr>
<td></td>
<td>Rest of world</td>
</tr>
</tbody>
</table>

Primary factors

- Land
- Natural resources (mineral, energy deposits)
- Skilled (professional) labour
- Unskilled (production) labour
- Physical capital

Industries

- Agriculture
- Metals, including steel, minerals and (non-coal) mining
- Coal mining and production
- Petroleum production and refining
- Processed agricultural products
- Electronic equipment
- Motor vehicles
- Chemical, rubber, plastic products
- Textiles
- Other manufactures
- Electricity supply and distribution
- Gas supply and distribution
- Telecommunications
- Insurance and finance
- Transport
- Construction
- Other Services

Source: Aggregates of the 57 industry GTAP Version 6 database from Dimaranan and McDougall (2002).
Table 3: Factor Intensities by Industrya

<table>
<thead>
<tr>
<th>Industry</th>
<th>Capital</th>
<th>Production labour</th>
<th>Skilled labour</th>
<th>Land and nat resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>11</td>
<td>59</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Metals & minerals</td>
<td>66</td>
<td>27</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Coal</td>
<td>28</td>
<td>30</td>
<td>3</td>
<td>39</td>
</tr>
<tr>
<td>Petroleum</td>
<td>86</td>
<td>5</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Processed agriculture</td>
<td>38</td>
<td>54</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Electronic equipment</td>
<td>66</td>
<td>26</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Motor vehicles</td>
<td>59</td>
<td>35</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Chemical products</td>
<td>62</td>
<td>32</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Textiles</td>
<td>40</td>
<td>52</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Other manufactures</td>
<td>68</td>
<td>27</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Electricity</td>
<td>69</td>
<td>21</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Gas mfg & distribution</td>
<td>49</td>
<td>37</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>Communications</td>
<td>92</td>
<td>5</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Insurance and finance</td>
<td>80</td>
<td>12</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Transport</td>
<td>78</td>
<td>18</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Construction</td>
<td>56</td>
<td>37</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Other Services</td>
<td>54</td>
<td>27</td>
<td>19</td>
<td>0</td>
</tr>
</tbody>
</table>

a These are factor shares of total value added in each industry, calculated from the database. Capital shares include pure profits. Shares sum to 100 per cent horizontally.

Source: Model database (social accounting matrix), derived from Dimaranan and McDougall (2002).
Table 4: Initial Demand Shares, Elasticities and Mark-ups^a

<table>
<thead>
<tr>
<th>Industry</th>
<th>Demand shares, %</th>
<th>Demand elasticities</th>
<th>Average demand elasticity</th>
<th>Industry mark-up<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intermedite</td>
<td>Final</td>
<td>Export</td>
<td>Invest</td>
</tr>
<tr>
<td>Agriculture</td>
<td>53</td>
<td>40</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Metals, Minerals</td>
<td>84</td>
<td>3</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Coal</td>
<td>61</td>
<td>4</td>
<td>33</td>
<td>0</td>
</tr>
<tr>
<td>Petroleum</td>
<td>58</td>
<td>12</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>Proc agriculture</td>
<td>50</td>
<td>34</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Electronics</td>
<td>24</td>
<td>4</td>
<td>65</td>
<td>6</td>
</tr>
<tr>
<td>Motor vehicles</td>
<td>46</td>
<td>8</td>
<td>15</td>
<td>29</td>
</tr>
<tr>
<td>Chemicals</td>
<td>77</td>
<td>6</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>Textiles</td>
<td>45</td>
<td>11</td>
<td>44</td>
<td>0</td>
</tr>
<tr>
<td>Other mfg</td>
<td>43</td>
<td>5</td>
<td>35</td>
<td>16</td>
</tr>
<tr>
<td>Electricity</td>
<td>84</td>
<td>13</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Gas mfg & distn</td>
<td>50</td>
<td>10</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Telecommunications</td>
<td>42</td>
<td>24</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Finance</td>
<td>57</td>
<td>29</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Transport</td>
<td>53</td>
<td>18</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Construction</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>86</td>
</tr>
</tbody>
</table>
| Other Services | 46 | 21 | 4 | 4 | 25 | -3.4 | -8.6 | -11.7 | -3.1 | -2.8 | -4.7 | 1.27

^a All these variables are endogenous in the model. Initial (base) values are provided here.

^b Industry mark-ups are the ratio of producer prices and average variable costs.

<table>
<thead>
<tr>
<th>Per cent changes</th>
<th>Continued export led growth<sup>b</sup></th>
<th>Export led growth beyond the Lewis turning point<sup>c</sup></th>
<th>Government expansion G/Y up by 25%, consumption tax financed<sup>d</sup></th>
<th>Government expansion G/Y up by 30% company tax financed<sup>d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Real GDP</td>
<td>16.6</td>
<td>4.9</td>
<td>2.6</td>
<td>-1.7</td>
</tr>
<tr>
<td>Real GNP</td>
<td>9.3</td>
<td>3.9</td>
<td>-8.9</td>
<td>0.6</td>
</tr>
<tr>
<td>Real exchange rate</td>
<td>1.3</td>
<td>3.5</td>
<td>1.3</td>
<td>2.0</td>
</tr>
<tr>
<td>Exports / GDP</td>
<td>19.1</td>
<td>5.8</td>
<td>-7.9</td>
<td>-10.0</td>
</tr>
<tr>
<td>Consumption / GDP</td>
<td>-8.7</td>
<td>-2.9</td>
<td>-2.1</td>
<td>0.8</td>
</tr>
<tr>
<td>CA surplus / GDP</td>
<td>17.0</td>
<td>-3.2</td>
<td>-4.4</td>
<td>-2.4</td>
</tr>
<tr>
<td>Production employment</td>
<td>17.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Real production wage</td>
<td>2.0<sup>e</sup></td>
<td>7.2</td>
<td>-3.5</td>
<td>-3.3</td>
</tr>
<tr>
<td>Real skilled wage</td>
<td>18.4</td>
<td>4.1</td>
<td>-1.5</td>
<td>-0.7</td>
</tr>
<tr>
<td>Physical capital stock</td>
<td>19.8</td>
<td>5.3</td>
<td>-1.4</td>
<td>-1.5</td>
</tr>
<tr>
<td>Real hm capital income<sup>f</sup></td>
<td>-3.8</td>
<td>-3.2</td>
<td>-13.6</td>
<td>-7.1</td>
</tr>
</tbody>
</table>

^a These simulations are all made in long run mode – endogenous capital stock with exogenous external rate of return on excess saving and perfect mobility of workers between agriculture and the other sectors. The number of oligopoly firms is fixed, however, so that pure profits are endogenous.

^b This simulation retains the existing policy regime and applies 4% labour productivity in agriculture, to continue to release workers, and 4% productivity in light manufacturing (the export sector) due to continued FDI, combined with an exogenous rise in the real production wage of just 2%. Modern sector labour supply therefore rises substantially.

^c Here the agricultural productivity rise is not imposed and the supply of production workers is fixed.

^d These simulations represent tax financed fiscal expansions which raise the government spending share of GDP by a quarter in the case of consumption tax financing and a third in the case of capital income tax financing.

^e In the export led growth case the real production wage increase is an arbitrary and exogenous 2%.

^f Real home capital income is the income accruing to domestically owned capital net of tax and depreciation.

Source: Simulations of the model described in the text.
Table 6: Simulated Industrial Reforms and Expansion Potential\(^a\)

<table>
<thead>
<tr>
<th>Per cent</th>
<th>Pure privatisation of SOEs(^b)</th>
<th>Pure splitting of SOEs - three fold fragmentation(^c)</th>
<th>Price caps on SOE oligopolies(^d)</th>
<th>Services driven growth - 4% productivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real GDP</td>
<td>0.6</td>
<td>-12.9</td>
<td>28.3</td>
<td>15.9</td>
</tr>
<tr>
<td>Real GNP</td>
<td>0.8</td>
<td>-13.8</td>
<td>13.0</td>
<td>6.5</td>
</tr>
<tr>
<td>Real exchange rate</td>
<td>1.2</td>
<td>2.9</td>
<td>-8.2</td>
<td>-6.6</td>
</tr>
<tr>
<td>Exports / GDP</td>
<td>-10.6</td>
<td>-17.2</td>
<td>42.9</td>
<td>22.3</td>
</tr>
<tr>
<td>Consumption / GDP</td>
<td>13.2</td>
<td>17.6</td>
<td>-12.0</td>
<td>-7.0</td>
</tr>
<tr>
<td>CA surplus / GDP</td>
<td>-61.9</td>
<td>-143.3</td>
<td>80.4</td>
<td>48.7</td>
</tr>
<tr>
<td>Real production wage</td>
<td>-0.2</td>
<td>15.6</td>
<td>30.4</td>
<td>19.4</td>
</tr>
<tr>
<td>Real skilled wage</td>
<td>0.9</td>
<td>-1.6</td>
<td>42.1</td>
<td>21.8</td>
</tr>
<tr>
<td>Physical capital stock</td>
<td>-0.4</td>
<td>26.4</td>
<td>28.3</td>
<td>16.9</td>
</tr>
<tr>
<td>Real hm capital income(^f)</td>
<td>-0.7</td>
<td>-50.0</td>
<td>4.4</td>
<td>3.2</td>
</tr>
</tbody>
</table>

\(^a\) These simulations are all made in long run mode – endogenous capital stock with exogenous external rate of return on excess saving and perfect mobility of workers between agriculture and the other sectors. The number of oligopoly firms is fixed, however, so that pure profits are endogenous.

\(^b\) Pure privatisation requires that all corporate income after tax should accrue to the collective private household and be split between consumption and saving at private rates.

\(^c\) The number of firms is enlarged three fold in heavy manufacturing and services.

\(^d\) Price caps alter the pricing formulae of oligopolistic firms, forcing them to halve their mark-ups over their average costs.

\(^f\) Real home capital income is the income accruing to domestically owned capital net of tax and depreciation.

Source: Simulations of the model described in the text.