Nonlinear consumption dynamics in general equilibrium

Jamie Hall*
School of Economics
University of New South Wales
jamie1212@gmail.com
November 29, 2012

Abstract
This paper explores the role of consumption habits using an estimated nonlinear dynamic stochastic general equilibrium (DSGE) model with heteroscedastic shocks. It finds that habits interact with time-varying volatility to produce a better and more plausible fit to the data. They accentuate the nonlinear character of the simple New Keynesian model to produce asymmetries between positive and negative shocks. In general equilibrium, these effects are transmitted as much through inflation as through consumption itself.
Keywords: New Keynesian, habits, particle filter, heteroscedastic.
JEL codes: E21, E32

1 Introduction
The day after the Lehmann Bros bankruptcy, a high-end Manhattan department store had its highest day of returns ever. Panicked buyers and their spouses returned luxury items as fast as they could (Shnayerson 2009). But not all types of consumption were so quick to adjust. The decline in airline ticket purchases, for instance, was much slower. In 2007, as the US economy slid into recession, and as airline ticket prices increased, so too did the number of people flying. The number of overseas trips would only decline significantly in early 2009, months after the Lehmann collapse and more than a year after the start of the economic downturn (Figure 1).

Consumption plans can be hard to change. This is not to imply that consumers are irrational or stupid; merely that aggregate consumption seems to

* I would like to acknowledge partial support from ARC grants LP0774950 and DP0988579.
respond sluggishly to shocks. Over the last decade, medium-scale DSGE models have reflected this fact by incorporating consumption habits. In other words, the consumption Euler equation at the heart of each model included dependence on a latent habit variable, which was assumed to be in log-linear proportion to the previous quarter’s consumption.

This paper develops a model which is generalised in two ways. First, the habit stock is allowed to respond to consumption in a nonlinear fashion—it can move faster or slower depending on the state of the business cycle. Second, the exogenous shocks hitting the economy have time-varying volatility. The changing size of these shocks can then interact with the nonlinear habit function, which could then generate cyclical changes in the speed of demand-side responses.

Section 2 provides more background detail on the existing literature. In section 3, I describe the simple New Keynesian model used in the paper, and section 4 explains how the model can be solved and estimated in nonlinear form. The results of this estimation are described in section 5.

2 Background

Examples of medium-scale DSGE models with a significant role for consumption habits include Smets and Wouters (2003), Smets and Wouters (2007), Edge, Kiley, and Laforte (2008), and Andreasen (2011). They include habits in the utility function because it makes consumption slower to respond to shocks, producing hump-shaped impulse responses rather than the decay curves that are generated by a simpler model (e.g. Walsh 2003). A hump-shaped or otherwise sluggish response is consistent with evidence from vector autoregressions on US data (Christiano, Eichenbaum, and Evans 2005), and with IV regressions on data from 13 advanced countries (Carroll, Slacalek, and Sommer 2008).

In all the DSGE models just cited, the authors used a linear functional form for the habit stock, meaning that the reference level of consumption moves in loglinear proportion to last period’s consumption. In most cases, this choice was compulsory, because the models were estimated in the form of a loglinear approximation. Nonlinear solution methods are conceptually difficult and computationally demanding. For that reason, nonlinear estimation remains rare; examples include Fernández-Villaverde and Rubio-Ramírez (2007b), Amisano and Tristani (2010), Andreasen (2011) and Doh (2011). This paper uses a new method, described in Hall (2012), to estimate a model with a nonlinear habit response.

While consumption habits have been used in econometrics since the 1950s, they fell out of favour in the era of rational expectations (Hall 1978). The current generation of models were developed under the rubric of asset pricing, where the motivation was to resolve the equity premium puzzle and the risk-free rate puzzle (Cochrane 2008). The evidence suggests that asset prices are affected most strongly by changes in the stochastic discount factor, as opposed to changes in dividends or news about future dividends (Cochrane 2011).
Consumption cannot be the only variable determining the stochastic discount factor; otherwise, with power utility, the intertemporal elasticity of consumption would need to be implausibly high (Mehra and Prescott 1985). This could be mitigated by using an Epstein-Zin utility function, in which risk appetite is distinct from the intertemporal elasticity (Binsbergen, Fernández-Villaverde, Koijen, and Rubio-Ramírez 2010, Rudebusch and Swanson 2012). This paper will follow an alternative route, using a nonlinear habit response, because it captures something about business cycles that seems intuitively satisfying: the idea that recessions have a disproportionately large impact on saving and spending, compared with small fluctuations during normal economic expansion. It would be interesting to see how this effect plays out in a general-equilibrium business cycle model.

Seeing a utility function with consumption habits, we may be reminded of the psychological literature on hedonic adaptation (Frederick and Loewenstein 1999, Taylor and Houthakker 2009). Certainly, much of the literature on consumption habits from the 1950s and 1960s was informed by this psychological phenomenon (see Pollak 1978, Muellbauer 1988). But one does not have to take it entirely literally as a description of consumption decision-making. Instead, consumption habits could be seen as the reduced form of a more complex model in which agents must expend time and energy to process new information. We could imagine that households receive noisy and incomplete signals of the aggregate economy (Lucas 1972, Woodford 2001). The processing of information itself could also constrain households’ planning (Mankiw and Reis 2002, Sims 2003). With that background, consumption habits can be seen as a simple and tractable representation of legitimately sluggish reactions to demand side shocks.

This paper also fits within a smaller literature on heteroscedasticity in DSGE models. Changes in volatility are important for understanding the dynamics of the economy and the appropriate policy responses (Fernández-Villaverde and Rubio-Ramírez 2010). Several papers have established that models with time-varying volatility can fit the data better than homoscedastic models (Fernández-Villaverde and Rubio-Ramírez 2007a, Justiniano and Primiceri 2008, Amisano and Tristani 2011). From a methodological point of view, those papers are complementary to this one: they use variations on a Taylor approximation to the model solution, evaluated at the nonstochastic steady state, while this paper uses an approximation that is conditioned on the value of the state variables at each period.

3 Model

There are many possible variations on the basic New Keynesian model. I use a simplified version of the model based on Amisano and Tristani (2010) and Fernández-Villaverde, Gordon, Guerrón-Quintana, and Rubio-Ramírez (2012).\(^1\) It includes a representative household with a utility function separable in consumption \(c_t\) and hours worked \(l_t\); a continuum of profit-maximising goods pro-

\(^1\) See also Woodford (2003) and Galí (2008) for further details and background.
ducers in monopolistic competition, with sticky prices; and a government sector that sets the nominal interest rate through a Taylor rule. Investment is not modelled, with the capital stock instead being taken as fixed.

3.1 Household utility

The model is based on the decisions of a representative household. The household’s objective is to maximise utility, given by

\[U_t = \sum_{h=0}^{\infty} \beta^h e^{b_{t+h-1}} \left(\frac{v(C_{t+h}, H_{t+h})^{1-\gamma}}{1-\gamma} - \frac{1}{1+\phi} L_{t+h}^{1+\phi} \right) \]

where \(C_t \) is consumption, \(H_t \) is the external habit stock, \(L_t \) is hours worked, and \(b_t \) is an exogenous disturbance representing demand-side shocks.

My main interest is in the specification of \(v(C, H) \) and the law of motion for the habit level \(H_t \). The first question is whether the habit stock is internal, meaning that each household’s habit stock tomorrow is affected by its own decisions today, or external, meaning that the habit stock is not influenced by a particular household’s actions. Using a first-order approximation, the distinction between internal and external habits makes little difference to the model’s output (Dennis 2009). But in a nonlinear setting, internal habits would require a more complex treatment of heterogeneity than my solution method can currently handle. For that reason, I assume that the habit stock is purely external.

I assume that current utility depends on the amount that current consumption exceeds the reference level:

\[v(C_t, H_t) = C_t - H_t \equiv C_t S_t \]

where \(S_t = \frac{C_t - H_t}{C_t} \) is the surplus consumption ratio. Following Campbell and Cochrane (1999)\(^2\), I specify the law of motion for \(S_t \) as follows:

\[\log S_t = \psi_{t-1} \tilde{c}_{t-1} \]
\[\psi_t = -k_1 \sqrt{\max(1 - k_2 \tilde{c}_t, 0)} \]

Here \(\tilde{c}_t \) is the log-deviation of \(C_t \) from its detrended steady-state level. The function \(\psi \) measures the sensitivity of the habit stock to the detrended level of consumption; \(k_1 \) and \(k_2 \) are parameters that control its average size and its sensitivity to the business cycle. The specification in equations (2) to (4), with \(k_1 > 0 \) and \(k_2 = 0 \), is equivalent to a standard external habits model (Abel 1990). With \(k_2 > 0 \), it also implies that consumption habits move rapidly during bad times, more slowly during normal times, and not at all in times of surplus.

\(^2\)In the original specification of Campbell and Cochrane (1999), \(\tilde{s}_t \) moves in response to the detrended change in the log of \(C_t \), and with an autoregressive coefficient on \(\tilde{s}_{t-1} \). I chose this specification instead because the Campbell-Cochrane version seems to have identification issues in a New Keynesian framework: in the macroeconomic aggregates, as opposed to asset prices, the model’s output looks like the same as that of a model without habits.
As $k_2 \to 0$, the response function reverts to a standard linear proportion, as in a standard DSGE model; and as $k_1 \to 0$, the effect of consumption habits disappears, and the model becomes equivalent to the simplest New Keynesian model.

The maximisation of (1) is subject to a budget constraint

$$P_tC_t + B_t = W_tL_t + R_{t-1}B_{t-1} + D_t$$

(5)

The household’s income is derived from a nominal wage W_t, a gross return R_{t-1} paid on risk-free nominal bonds B_{t-1}, and profits D_t. This income can be spent on consumption and on saving for next period. P_t is the level of the consumer price index in period t.

The resulting first-order conditions of the household are

$$\lambda_t = E_t\beta e^{\rho_t} \lambda_{t+1} + \frac{R_t}{\Pi_{t+1}}$$

(6)

$$C_t^{1-\gamma}S_t^{\phi_t-1(\gamma-1)} = \lambda_t$$

(7)

$$\frac{W_t}{P_t} \lambda_t = L_t^0$$

(8)

Equation (6) is an intertemporal consumption Euler equation, connecting the marginal utility of consumption λ_t with its expected value next period, deflated by a time preference factor $\beta \in (0, 1)$ and the expected real interest rate. Π_{t+1} is the ratio of the consumer price index in period $t + 1$ and period t.

Equation (7) pins down the instantaneous marginal utility of wealth. (Again, I assume that the habit stock is purely external, so that $\frac{\partial S_t}{\partial C_t(t)} = 0$ for any household i.)

Equation (8) is an intratemporal optimality condition, equating the marginal disutility of labour (L_t^0) to the marginal benefit of increased consumption ($\frac{W_t}{P_t} \lambda_t$). Wages in the model are fully flexible, and there are no labour market rigidities, so this equation determines the real wage.

3.2 Inflation, interest rates, and market clearing

The supply-side and policy components of the model are standard. I assume that there is a continuum of firms in a monopolistically competitive market, each facing a constant elasticity of demand $\theta > 1$. The production function of the representative firm is

$$Y_t(i) = A_tL_t(i)$$

(9)

Here A_t is a technology shock and $L_t(i)$ is the amount of labour hired by firm i. It follows that real marginal cost for the representative firm is given by

$$MC_t = \frac{W_t}{A_t}$$

(10)

3In equilibrium, each firm earns positive profits due to its market power. I assume that each household holds a portfolio such that the profits from every firm are distributed equally to every household.
I make the standard assumption that firms are able to change their price with fixed probability θ_p each period (Calvo 1983). The firm’s problem is to choose a price in order to maximise expected profits subject to this constraint, and subject to its constant-elasticity demand curve. Following Smets and Wouters (2003), I assume that a fraction ω of firms use a rule of thumb for pricing: if they are unable to recalculate their optimal price in a given quarter, they change their price to match the last quarter’s rate of inflation. This assumption helps the model to capture sluggish responses to shocks on the supply side, keeping them separate from the effects of habits on the demand side.

Let the auxiliary variables $G_{1,t}$ and $G_{2,t}$ equal the present values of marginal cost and marginal revenue. The profit maximisation conditions are then given by

\begin{align}
\theta G_{1,t} &= (\theta - 1)G_{2,t} \\
G_{1,t} &= MC_t + \beta e^{b_t} \theta_p E_t \left(\frac{\Pi_{t+1}}{\Pi_t} \right)^{\theta} G_{1,t+1} \\
G_{2,t} &= \Pi_t^* + \beta e^{b_t} \theta_p E_t \left(\frac{\Pi_{t+1}}{\Pi_t} \right)^{\theta - 1} \frac{\Pi_t^*}{\Pi_{t+1}} G_{2,t+1}
\end{align}

Here G_1 is the expected present value of marginal costs, G_2 is the expected present value of marginal revenues, and Π_t^* is the price chosen by firms with the opportunity to reset in period t. Aggregate CPI inflation is given by

\[1 = \theta_p \left(\frac{\Pi_t}{\Pi_{t-1}} \right)^{\theta-1} + (1 - \theta_p)(\Pi_t^*)^{1-\theta} \]

If the model is loglinearised around its nonstochastic steady state, with steady-state inflation $\log \Pi = 0$, then equations (11) to (14) collapse into the familiar New Keynesian Phillips curve.

The market clearing conditions are

\begin{align}
Y_t &= C_t \\
B_t &= 0
\end{align}

Interest rate policy is set according to

\[R_t = R_t^{1-\rho} R_{t-1}^{\phi_c} \left[\left(\frac{\Pi_t}{\Pi_t} \right)^{\phi_c} \left(\frac{C_t}{C_t} \right)^{\phi_c} \right]^{1-\rho} \exp (m_t) \]

This is close to a standard Taylor Rule for monetary policy. The interest rate is assumed to respond to consumption, rather than GDP, since consumption is an observed endogenous variable in the model and GDP is not. The exogenous process m_t is an exogenous monetary-policy shock.

\[\text{See Fernández-Villaverde and Rubio-Ramírez (2006) and Fernández-Villaverde, Gordon, Guerrón-Quintana, and Rubio-Ramírez (2012).} \]
3.3 Exogenous shocks

The model is closed by specifying the laws of motion for the exogenous processes. These are assumed to be as follows:

\[
\log A_t \equiv a_t = \rho_a a_{t-1} + \sigma_{a,t} \epsilon_{a,t} \quad (18)
\]

\[
b_t = \rho_b b_{t-1} + \sigma_{b,t} \epsilon_{b,t} \quad (19)
\]

\[
m_t = \rho_m m_{t-1} + \sigma_{m,t} \epsilon_{m,t} \quad (20)
\]

The volatility of the US macroeconomy appears to have changed over time. For that reason, I allow for heteroscedasticity by assuming that each volatility \(\sigma_{i,t}\) is determined by an independent GARCH process:

\[
\sigma_{i,t}^2 = \alpha_i^2 + \beta_i \epsilon_{i,t-1}^2 + \gamma_i \sigma_{i,t-1}^2 \quad (21)
\]

This adds two free parameters, \(\beta_i\) and \(\gamma_i\), for each of the three exogenous shocks. In estimating the model, I will also consider variations in which the GARCH processes are turned off (\(\beta_i = \gamma_i = 0\)), to check whether this extra flexibility is justified by a substantial increase in model fit.

4 Solution and estimation

I solved the model recursively using a locally linear approximation, and estimated it using a particle filter. For details on the mechanics of this estimation method, see Hall (2012). In brief, the idea is to take a first-order approximation of the model’s reduced-form decision rule, conditional on the previous period’s values of the exogenous forcing variables and endogenous predetermined variables. Intuitively, the sequential Monte Carlo framework of particle filtering relies on representing the model’s likelihood function with the product of a series of conditional likelihoods:

\[
p(y_1:T|\theta) = \prod_{t=1}^{T} p(y_t|\theta, y_{1:(t-1)})
\]

Therefore, the approximate solution of the model at time \(t\) does not need to be unconditionally accurate for all time. It only needs to maintain its validity into time \((t + 1)\), at which point it can be recalculated. Thus the locally linear approach can attain higher accuracy close to the current state, at the cost of a larger discrepancy in other areas of the state space—but those areas are unlikely to be reached in a single step.

This approximation is relatively quick to use, because the integral equations that pin down the coefficients of the linear approximation can be written in terms of a Gaussian moment generating function, which has an analytical solution (so that numerical integration is not required). This results in a multivariate fixed-point problem. Using a direct Picard-type iterative approach, the fixed point is often hard to find; but modern techniques of fixed-point acceleration converge
quadratically to a stable answer (Fang and Saad 2009, Walker and Ni 2011). To initialise the approximation, I used the nonstochastic loglinear approximation provided by Dynare (Adjemian, Bastani, Karamé, Juillard, Maih, Mihoubi, Perendia, Ratto, and Villemot 2012).

Since the approximate solution of the model at time t is linear (conditional on the values of the predetermined variables), it fits naturally into the framework of fully adapted particle filtering (Pitt and Shephard 1999). In estimating the likelihood of the model for a given value of the parameter vector θ, we maintain a swarm of particles to approximate the distribution of the model’s latent variables, conditional on observations up to time t. To forecast and update the model’s state vector at time $t + 1$, we can use the one-step Kalman filter, conditional on each particle. In models with a high signal to noise ratio, or for models in danger of misspecification, this method is much more efficient than the standard particle filter.

In calculating the solution of the model, I ignored the zero lower bound on the nominal interest rate. This is clearly less than ideal, given that the US has reached that bound in recent quarters. The locally linear approximation becomes numerically unstable when the zero lower bound constraint is imposed. This may be related to the unusual properties of the zero lower bound: its effects are exceptionally sensitive to parameter values (Dong 2012), and it can be consistent with multiple equilibria (Braun, Körber, and Waki 2012). I hope that future research will be able to resolve this problem.

I placed fairly loose priors on most of the model’s parameters, as reported in Table 6. With the exception of the GARCH parameters, which are jointly constrained to the stable region, the priors for each parameter are independent. The priors are broadly in line with those used in previous studies (e.g. Smets and Wouters 2007). I placed loose priors on the habit response coefficients k_1 and k_2.

\[\text{Table 1 about here.} \]

I took draws from the posterior distribution of the parameters using particle Markov chain Monte Carlo (Andrieu, Doucet, and Holenstein 2010). To assist computation, I assumed that the model’s observable variables were affected by a negligible amount of observation noise, with a standard deviation of 0.01%. For comparison with the baseline model, I estimated variants of the model without heteroscedastic shocks ($\beta_i = \gamma_i = 0$) and without habits ($k_1 = k_2 = 0$). I also estimated a linear approximation of the model using standard methods. In all cases, I used the adaptive random walk Metropolis Hastings algorithm (Haario, Saksman, and Tamminen 2001). The Markov chains were initialised near the estimated posterior mode, and the proposal covariance matrix was initialised with small positive values on the diagonal. Adaptation of the proposal began after 250 draws. The posterior mode was estimated using a numerical minimiser, in the linear case, and a trial MCMC run for the nonlinear cases. I used 100

\footnote{Here, I follow Abel (1990) in allowing k_1 to be greater than 1. Dennis (2009) restricted k_1 to $[0, 1)$.}
particles in the fully adapted particle filter, because this produced estimates of
the loglikelihood with a standard deviation of around 1, which is optimal for a
Metropolis Hastings run (Pitt, Silva, Giordani, and Kohn 2012). I took 500,000
draws from the posterior distribution, discarding the first 400,000 as burn-in.

The observable variables of the model are $\log c_t$, $\log \Pi_t$ and r_t. I used quarterly data from 1960Q1 to 2012Q3, a total of 211 quarters. I obtained the data from the FRED (Federal Reserve Economic Data) database from the Federal Reserve Bank of St. Louis. For consumption, I used real personal consumption expenditures (FRED code PCECC96). Following Smets and Wouters (2003) and Amisano and Tristani (2010), I substracted a loglinear trend from the consumption series prior to estimation. For inflation, I used the PCE deflator excluding food and energy (FRED code JCXFE_PCH). I chose this measure, rather than the headline PCE deflator, because the rapid movements in food and energy prices can produce fluctuations that are difficult to capture in a simple DSGE model. Both the consumption and inflation measures were seasonally adjusted prior to estimation. For the nominal interest rate I used the effective Federal Funds rate (FEDFUNDS), converted to a quarterly basis.

5 Analysis

A nonlinear model with both consumption habits and time-varying volatility fits the data considerably better than models with only one of those features. This is summarised in Table 2, where I report the marginal loglikelihood of different variations of the model.\(^6\) The largest improvement in model fit comes from allowing time-varying volatility, with habits adding further accuracy. The Table also contains three measures that penalise the model for additional free parameters, with the goal of reducing overfitting. Those measures are the Akaike Information Criterion (Akaike 1974), the Bayesian Information Criterion (Schwarz 1978) and the Deviance Information Criterion (Spiegelhalter, Best, Carlin, and Van Der Linde 2002). The AIC and DIC favour the fully nonlinear model, while the BIC narrowly prefers the nonlinear model with a linear habit response function ($k_2 = 0$ in equation 4).

\[\text{Table 2 about here.}\]

Figure 2 shows the one-step-ahead forecasts for the three observable variables made by the fully nonlinear model and by the linear approximation. Unsurprisingly perhaps, the nonlinear model has a better in-sample fit than the linear version during periods of heightened volatility, such as the 1970s. The models’ in-sample fits are very similar during the Great Moderation period of 1985-2007. Both models have difficulty tracking the level of inflation for a few quarters around 1970, 1977 and 2010. A time-varying or regime-switching version of the Taylor rule may help in this regard.

\(^6\)I estimated the marginal loglikelihoods using the method of Gelfand and Dey (1994), as implemented by Geweke (1999).
In addition to the summary measures in Table 2, one can look at the filtered residuals to see the improvement from allowing time-varying volatility. Figure 3 shows the standardised residuals—that is, the estimated values of $\frac{\epsilon_{i,t}}{\sigma_{i,t}}$ evaluated at the posterior mean of the parameters, for the fully nonlinear model and the linear approximation. The standardised residuals for the linear model, in the left-hand column, are clearly non-normal, showing many draws close to the origin and quite a few draws larger than 3 standard deviations. The nonlinear shocks are more reasonable in size. They show a high degree of autocorrelation, indicating that the model specification could be improved further, but their marginal distribution is not unreasonable.

The model with GARCH errors but without habits has a reasonable marginal likelihood—higher than the linear model’s—but this overstates its ability to fit the data. Figure 4 shows the observed values of consumption in scatter plots against the model’s exogenous supply shifter a_t. The plots show four model variations: the baseline model, a linear approximation, a homoscedastic model with habits, and the model with GARCH but without habits. For the last model, the observed variable shows a clear correlation with the level of a_t. The model’s estimated ‘structural supply shocks’ are little more than movements in consumption itself. Nobody would claim that this simple DSGE model is close to the truth, but the difference in the panels of Figure 4 suggests that the addition of habits improves the model specification.

The posterior distributions of the model’s structural parameters are fairly similar in the linear and nonlinear cases, but there are some important differences. As shown in Table 6, the inverse Frisch labour supply elasticity ϕ is estimated to be higher by the nonlinear model. While the effect is small, the direction of change is interesting, since one might have expected that the model would prefer to reduce the curvature in the Phillips curve and thereby make it easier to fit the data. (With labour hours unobserved, the only noticeable effect of an increase in ϕ within the model is to make marginal costs respond more sharply to household marginal utility.) Additionally, the nonlinear model has a smaller estimated persistence of monetary policy shocks (ρ_m) and a smaller degree of policy inertia (ρ_r). This may be evidence that the nonlinear model fits the decidedly non-Gaussian interest rate series better than the linear approximation can, despite the model’s lack of a zero lower bound.

There is weak evidence in favour of the idea that consumption habits move more quickly or more slowly depending on the business cycle. Posterior draws
from the fully nonlinear model had \(k_2 > 0 \) about 85\% of the time. And the model with this kind of asymmetric response has a somewhat higher marginal likelihood than the model without it—high enough to justify the addition of an extra free parameter, at least according to the AIC and the DIC. But the estimated level of \(k_2 \) implies a fairly small variation across the span of observations. At the highest end of the posterior confidence interval, the habit sensitivity \(\psi \) ranges between 7.1 (in 1973 Q2) and 8.1 (in 2012 Q3). This might reflect the small number of cyclical troughs in the dataset, coupled with the slow response of consumption to a shock.

Additionally, the evidence for a nonlinear habit response function might be weak because the model already captures important asymmetries: between small and large shocks, and between positive and negative shocks. Figure 5 plots impulse responses for demand shocks of \(\pm 2 \) standard deviations. They are plotted at the estimated mean parameter values for the baseline model, the model without habits, and the model without time-varying volatility. (The responses are measured as deviations from a situation initialised at the non-stochastic steady state, since the adjustment to different volatility levels causes some movement in the endogenous variables.) Figure 6 repeats the exercise for supply shocks. For the first two models, I set the volatility of the shocks equal to their estimated marginal levels. The baseline model's inflation response to a large negative demand shock is bigger, in absolute value, than the inflation response to a large positive shock. This asymmetry is much weaker in the model without habits. Similarly, the inflation response to a large positive supply shock is a little bigger in absolute value than a large negative shock; again, the model without habits does not exhibit this asymmetry to the same extent. The explanation is that the effects of consumption habits interact with the stickiness of prices. In the presence of habits, consumption will be affected by a shock for a longer period. Therefore, with a contractionary demand shock, firms' marginal costs will be low for longer, since households will be willing to work at a lower rate (equation 9). With a reciprocal labour-supply elasticity \(\phi > 1 \), there is a cyclical asymmetry in the labour-supply schedule, which is accentuated by price stickiness in the presence of habits. This effect is largest in the model with homoscedastic shocks; with GARCH innovations, a large shock announces a period of unusually high volatility, which causes firms to display more risk-averse behaviour.

[Figure 5 about here.]

[Figure 6 about here.]

[Figure 7 about here.]

[Figure 8 about here.]

Finally, the estimated monetary policy shocks in the model with habits are smaller (Figure 8). Surprisingly, perhaps, the impulse responses in Figure 7 show that the model without habits generates a larger response from a given
monetary shock, particularly in inflation. Indeed, at the posterior mean of the parameters, the model without habits generates such a strong inflationary response from a large tightening in the policy stance that the nominal interest rate initially falls, to produce a real interest rate consistent with the model’s Taylor rule. The smaller size of the shocks in the model with habits could be interpreted as evidence that the model with habits fits the data better, in the sense that there is a smaller residual to be explained after the effects of aggregate supply and demand are accounted for.

6 Conclusion: What do habits do?

Consumption habits make the demand side of a DSGE model more sluggish in response to shocks, but in a nonlinear model their contribution is more important. Habits interact with time-varying volatility to produce a better and more plausible fit to the data. They accentuate the nonlinear character of the simple New Keynesian model to produce asymmetries between positive and negative shocks. In general equilibrium, these effects are transmitted as much through inflation as through consumption itself. For those reasons, a habit-response function that responds in a nonlinear way to the level of consumption appears to be redundant in a general equilibrium model.

As I mentioned in section 2, consumption habits can be seen as a rough-and-ready approximation to a more realistic model of the demand side, in which households’ slow responses to shocks are due to factors such as information processing and idiosyncratic shocks. A possible next step would be to estimate a more complex model with an explicit treatment of these factors. But the results of this model also suggest that it would be worth including a richer version of the supply side. In particular, it may be worth exploring the connection between consumption habits and inflation in a model with wage-setting rigidities and heterogeneous labour supply elasticities.

References

List of Figures

1. Year-on-year growth in US citizen air traffic to overseas regions, Canada, and Mexico. Shading shows NBER recession dates. Sources: Office of Travel and Tourism Industries; NBER.
2. In-sample fit of the linear model (red) and the nonlinear model (blue). The charts show the models’ one-step-ahead forecasts for the three observable variables, using the full sample to estimate the parameters. Actual observations are in black.
3. Standardised residuals of the linear model and the fully nonlinear model. If the model specification were correct, then these would look like a series of iid N(0,1) draws.
4. Scatter plots of the observed values of consumption against the estimated values of the supply-shock process \hat{a}_t.
5. Impulse responses from a 2-σ sized increase in the demand-shock process \hat{g}_t and a 2-σ decrease. These estimates were calculated at the posterior mean for each model. Left-hand column: fully nonlinear model; centre column: model with $k_1 = k_2 = 0$; right-hand column: model with $\beta_i = \gamma_i = 0$.
6. Impulse responses from a 2-σ sized increase in the supply-shock process \hat{a}_t and a 2-σ decrease. These estimates were calculated at the posterior mean for each model. Left-hand column: fully nonlinear model; centre column: model with $k_1 = k_2 = 0$; right-hand column: model with $\beta_i = \gamma_i = 0$.
7. Impulse responses from an increase and decrease in the policy-shock process \hat{m}_t sufficient to move the interest rate by about 25 basis points. These estimates were calculated at the posterior mean for each model. Left-hand column: fully nonlinear model; centre column: model with $k_1 = k_2 = 0$; right-hand column: model with $\beta_i = \gamma_i = 0$.
8. Estimated level of the policy-shock process \hat{m}_t for the linear and fully nonlinear versions of the model.
Figure 1: Year-on-year growth in US citizen air traffic to overseas regions, Canada, and Mexico. Shading shows NBER recession dates.
Sources: Office of Travel and Tourism Industries; NBER.
Figure 2: In-sample fit of the linear model (red) and the nonlinear model (blue). The charts show the models' one-step-ahead forecasts for the three observable variables, using the full sample to estimate the parameters. Actual observations are in black.
Figure 3: Standardised residuals of the linear model and the fully nonlinear model. If the model specification were correct, then these would look like a series of iid N(0,1) draws.
Figure 4: Scatter plots of the observed values of consumption against the estimated values of the supply-shock process \tilde{u}_t.
Figure 5: Impulse responses from a 2-σ sized increase in the demand-shock process \hat{g}_t and a 2-σ decrease. These estimates were calculated at the posterior mean for each model. Left-hand column: fully nonlinear model; centre column: model with $k_1 = k_2 = 0$; right-hand column: model with $\beta_i = \gamma_i = 0$.

22
Figure 6: Impulse responses from a 2-σ sized increase in the supply-shock process \hat{a}_t and a 2-σ decrease. These estimates were calculated at the posterior mean for each model. Left-hand column: fully nonlinear model; centre column: model with $k_1 = k_2 = 0$; right-hand column: model with $\beta_i = \gamma_i = 0$.

23
Figure 7: Impulse responses from an increase and decrease in the policy-shock process \tilde{m}_t sufficient to move the interest rate by about 25 basis points. These estimates were calculated at the posterior mean for each model. Left-hand column: fully nonlinear model; centre column: model with $k_1 = k_2 = 0$; right-hand column: model with $\beta_i = \gamma_i = 0$.
Figure 8: Estimated level of the policy-shock process \hat{m}_t for the linear and fully nonlinear versions of the model.
List of Tables

1 Prior distributions ... 27
2 Measures of in-sample fit. Boldface indicates best model accord-
ing to each criterion.. 28
3 Posterior estimates ... 29
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Interpretation</th>
<th>Distribution</th>
<th>Mean</th>
<th>Std. dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>Demand factor</td>
<td>Beta</td>
<td>0.99</td>
<td>0.0025</td>
</tr>
<tr>
<td>γ</td>
<td>Consumption elasticity</td>
<td>Gamma</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>k_1</td>
<td>Habit response coefficient</td>
<td>Gamma</td>
<td>2</td>
<td>1.4</td>
</tr>
<tr>
<td>k_2</td>
<td>Habit asymmetry coefficient</td>
<td>Normal</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>ρ_b</td>
<td>Demand shock persistence</td>
<td>Beta</td>
<td>0.5</td>
<td>0.05</td>
</tr>
<tr>
<td>σ_b</td>
<td>Demand shock marginal volatility</td>
<td>Gamma</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>β_b</td>
<td>Demand shock GARCH parameter 1</td>
<td>Beta</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>γ_b</td>
<td>Demand shock GARCH parameter 2</td>
<td>Beta</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Supply-side parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ</td>
<td>Labour supply elasticity</td>
<td>Gamma</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>θ_p</td>
<td>Price stickiness</td>
<td>Beta</td>
<td>0.7</td>
<td>0.01</td>
</tr>
<tr>
<td>θ</td>
<td>Degree of imperfect competition</td>
<td>Gamma</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>ω</td>
<td>Indexation rate</td>
<td>Beta</td>
<td>0.5</td>
<td>0.1</td>
</tr>
<tr>
<td>ρ_a</td>
<td>Supply shock persistence</td>
<td>Beta</td>
<td>0.5</td>
<td>0.05</td>
</tr>
<tr>
<td>σ_a</td>
<td>Supply shock marginal volatility</td>
<td>Gamma</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>β_a</td>
<td>Supply shock GARCH parameter 1</td>
<td>Beta</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>γ_a</td>
<td>Supply shock GARCH parameter 2</td>
<td>Beta</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Policy parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_r</td>
<td>Interest rate smoothing</td>
<td>Beta</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>ϕ_{π}</td>
<td>Central bank inflation response</td>
<td>Gamma</td>
<td>1.2</td>
<td>0.2</td>
</tr>
<tr>
<td>ϕ_c</td>
<td>Central bank output response</td>
<td>Gamma</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Π</td>
<td>Steady-state gross inflation</td>
<td>Normal</td>
<td>1.005</td>
<td>0.0005</td>
</tr>
<tr>
<td>ρ_m</td>
<td>Policy shock persistence</td>
<td>Beta</td>
<td>0.5</td>
<td>0.05</td>
</tr>
<tr>
<td>σ_m</td>
<td>Policy shock marginal volatility</td>
<td>Gamma</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>β_m</td>
<td>Policy shock GARCH parameter 1</td>
<td>Beta</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>γ_m</td>
<td>Policy shock GARCH parameter 2</td>
<td>Beta</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Note: In the nonlinear approximation, each pair of GARCH parameters β_i and γ_i was restricted to the stable region, $0 \leq \beta_i + \gamma_i < 1$.

Table 1: Prior distributions
Table 2: Measures of in-sample fit. Boldface indicates best model according to each criterion.

<table>
<thead>
<tr>
<th>Approximation</th>
<th>GARCH errors</th>
<th>Habit sensitivity</th>
<th>Marg. Loglhd.</th>
<th>AIC</th>
<th>BIC</th>
<th>DIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>No</td>
<td>Linear</td>
<td>2770</td>
<td>5619</td>
<td>5543</td>
<td>5677</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>No</td>
<td>Linear</td>
<td>2696</td>
<td>5629</td>
<td>5553</td>
<td>5693</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>Yes</td>
<td>None</td>
<td>2797</td>
<td>5763</td>
<td>5665</td>
<td>5793</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>Yes</td>
<td>Linear</td>
<td>2819</td>
<td>5769</td>
<td>5667</td>
<td>5802</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>Yes</td>
<td>Nonlinear</td>
<td>2833</td>
<td>5772</td>
<td>5666</td>
<td>5814</td>
</tr>
</tbody>
</table>

Approximation GARCH errors Habit sensitivity Marg. Loglhd. AIC BIC DIC
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Linear</th>
<th>Nonlinear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand-side parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>0.993 [0.992,0.995]</td>
<td>0.994 [0.993,0.995]</td>
</tr>
<tr>
<td>γ</td>
<td>1.51 [1.3,1.7]</td>
<td>1.4 [1.3,1.5]</td>
</tr>
<tr>
<td>k_1</td>
<td>5.32 [3.5,7.9]</td>
<td>7.51 [5.5,9.2]</td>
</tr>
<tr>
<td>k_2</td>
<td>—</td>
<td>0.667 [-0.75,1.9]</td>
</tr>
<tr>
<td>ρ_b</td>
<td>0.564 [0.49,0.63]</td>
<td>0.475 [0.42,0.54]</td>
</tr>
<tr>
<td>μ_{σ_b}</td>
<td>0.00802 [0.0069,0.0094]</td>
<td>0.0199 [0.015,0.026]</td>
</tr>
<tr>
<td>β_b</td>
<td>—</td>
<td>0.215 [0.13,0.3]</td>
</tr>
<tr>
<td>γ_b</td>
<td>—</td>
<td>0.575 [0.45,0.7]</td>
</tr>
<tr>
<td>Supply-side parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ</td>
<td>1.44 [0.98,1.9]</td>
<td>1.92 [1.4,2.3]</td>
</tr>
<tr>
<td>θ_p</td>
<td>0.708 [0.69,0.72]</td>
<td>0.734 [0.72,0.75]</td>
</tr>
<tr>
<td>θ</td>
<td>9.25 [5.2,14]</td>
<td>9.65 [6,13]</td>
</tr>
<tr>
<td>ω</td>
<td>0.394 [0.26,0.55]</td>
<td>0.424 [0.32,0.54]</td>
</tr>
<tr>
<td>ρ_a</td>
<td>0.551 [0.46,0.64]</td>
<td>0.536 [0.46,0.59]</td>
</tr>
<tr>
<td>μ_{σ_a}</td>
<td>0.0123 [0.0094,0.016]</td>
<td>0.0199 [0.013,0.032]</td>
</tr>
<tr>
<td>β_a</td>
<td>—</td>
<td>0.149 [0.1,0.22]</td>
</tr>
<tr>
<td>γ_a</td>
<td>—</td>
<td>0.842 [0.76,0.89]</td>
</tr>
<tr>
<td>Policy parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_r</td>
<td>0.742 [0.59,0.89]</td>
<td>0.697 [0.64,0.74]</td>
</tr>
<tr>
<td>ϕ_{π}</td>
<td>1.24 [1.1,1.5]</td>
<td>0.627 [0.53,0.72]</td>
</tr>
<tr>
<td>ϕ_c</td>
<td>0.39 [0.26,0.53]</td>
<td>0.0732 [0.047,0.11]</td>
</tr>
<tr>
<td>Π</td>
<td>1.0059 [1.005,1.007]</td>
<td>1.0054 [1.005,1.006]</td>
</tr>
<tr>
<td>μ_m</td>
<td>0.864 [0.82,0.9]</td>
<td>0.653 [0.59,0.71]</td>
</tr>
<tr>
<td>μ_{σ_m}</td>
<td>0.00351 [0.003,0.0041]</td>
<td>0.00518 [0.0039,0.0066]</td>
</tr>
<tr>
<td>β_m</td>
<td>—</td>
<td>0.24 [0.18,0.3]</td>
</tr>
<tr>
<td>γ_m</td>
<td>—</td>
<td>0.671 [0.6,0.76]</td>
</tr>
</tbody>
</table>

Table 3: Posterior estimates